Element superconductors with the single atoms provide clean and fundamental platforms for studying superconductivity.Although elements with d electrons are usually not favored by conventional BCS,the record supercondu...Element superconductors with the single atoms provide clean and fundamental platforms for studying superconductivity.Although elements with d electrons are usually not favored by conventional BCS,the record superconducting critical temperature(T_(c))in element scandium(S_(c))has further ignited the intensive attention on transition metals.The element molybdenum(M_o)with a half-full d-orbital is studied in our work,which fills the gap in the study of Mo under high pressure and investigates the pressure dependence of superconductivity.In this work,we exhibit a robust superconductivity of Mo in the pressure range of 5 GPa to 160 GPa via high-pressure electrical transport measurements,the T_(c) varies at a rate of0.013 K/GPa to 8.56 K at 160 GPa.Moreover,the superconductivity is evidenced by the T_(c) shifting to lower temperature under applied magnetic fields,and the upper critical magnetic fields are extrapolated by the WHH equation and GL equation;the results indicate that the maximum upper critical magnetic field is estimated to be 8.24 T at 137 GPa.We further investigate the superconducting mechanism of Mo,the theoretical calculations indicate that the superconductivity can be attributed to the strong coupling between the electrons from the partially filled d band and the phonons from the frequency zone of 200-400 cm^(-1).展开更多
Interpreting reservoir properties through log data and logging responses in complex strata is critical for efficient petroleum exploitation,particularly for metamorphic rocks.However,the unsatisfactory accuracy of suc...Interpreting reservoir properties through log data and logging responses in complex strata is critical for efficient petroleum exploitation,particularly for metamorphic rocks.However,the unsatisfactory accuracy of such interpretations in complex reservoirs has hindered their widespread application,resulting in severe inconvenience.In this study,we proposed a multi-mineral model based on the least-square method and an optimal principle to interpret the logging responses and petrophysical properties of complex hydrocarbon reservoirs.We began by selecting the main minerals based on a comprehensive analysis of log data,X-ray diffraction,petrographic thin sections and scanning electron microscopy(SEM)for three wells in the Bozhong 19-6 structural zone.In combination of the physical properties of these minerals with logging responses,we constructed the multi-mineral model,which can predict the log curves,petrophysical properties and mineral profile.The predicted and measured log data are evaluated using a weighted average error,which shows that the multi-mineral model has satisfactory prediction performance with errors below 11%in most intervals.Finally,we apply the model to a new well“x”in the Bozhong 19-6 structural zone,and the predicted logging responses match well with measured data with the weighted average error below 11.8%for most intervals.Moreover,the lithology is dominated by plagioclase,K-feldspar,and quartz as shown by the mineral profile,which correlates with the lithology of the Archean metamorphic rocks in this region.It is concluded that the multi-mineral model presented in this study provides reasonable methods for interpreting log data in complex metamorphic hydrocarbon reservoirs and could assist in efficient development in the future.展开更多
Refractory materials,as the crucial foundational materials in high-temperature industrial processes such as metallurgy and construction,are inevitably subjected to corrosion and penetration from high-temperature media...Refractory materials,as the crucial foundational materials in high-temperature industrial processes such as metallurgy and construction,are inevitably subjected to corrosion and penetration from high-temperature media during their service.Traditionally,observing the in-situ degradation process of refractory materials in complex high-temperature environments has presented challenges.Post-corrosion analysis are commonly employed to assess the slag resistance of refractory materials and understand the corrosion mechanisms.However,these methods often lack information on the process under the conditions of thermal-chemical-mechanical coupling,leading to potential biases in the analysis results.In this work,we developed a non-contact high-temperature machine vision technology by the integrating Digital Image Correlation(DIC)with a high-temperature visualization system to explore the corrosion behavior of Al2O3-SiO2 refractories against molten glass and Al2O3-MgO dry ramming refractories against molten slag at different temperatures.This technology enables realtime monitoring of the 2D or 3D overall strain and average strain curves of the refractory materials and provides continuous feedback on the progressive corrosion of the materials under the coupling conditions of thermal,chemical,and mechanical factors.Therefore,it is an innovative approach for evaluating the service behavior and performance of refractory materials,and is expected to promote the digitization and intelligence of the refractory industry,contributing to the optimization and upgrading of product performance.展开更多
Self-incompatibility(SI)substantially restricts the yield and quality of citrus.Therefore,breeding and analyzing selfcompatible germplasm is of great theoretical and practical signi ficance for citrus.Here,we focus on...Self-incompatibility(SI)substantially restricts the yield and quality of citrus.Therefore,breeding and analyzing selfcompatible germplasm is of great theoretical and practical signi ficance for citrus.Here,we focus on the mechanism of a self-compatibility mutation in‘Guiyou No.1'pummelo(Citrus maxima),which is a spontaneous mutant of‘Shatian’pummelo(Citrus maxima,self-incompatibility).The rate of fruit set and the growth of pollen tubes in the pistil con firmed that a spontaneous mutation in the pistil is responsible for the self-compatibility of‘Guiyou No.1'.Segregation ratios of the S genotype in progeny,expression analysis,and western blotting validated that the reduced levels of S_(2)-RNase mRNA contribute to the loss of SI in‘Guiyou No.1'.Furthermore,we report a phased assembly of the‘Guiyou No.1'pummelo genome and obtained two complete and well-annotated S haplotypes.Coupled with an analysis of SV variations,methylation levels,and gene expression,we identi fied a candidate gene(CgHB40),that may in fluence the regulation of the S/^RNase promoter.Our data provide evidence that a mutation that affects the pistilled to the loss of SI in‘Guiyou No.1'by in fluencing a poorly understood mechanism that affects transcriptional regulation.This work signi ficantly advances our understanding of the genetic basis of the SI system in citrus and provides information on the regulation of S-RNase genes.展开更多
Background:Although the constitutively activated Wnt/β-catenin signaling pathway plays vital roles in gastric cancer(GC)progression,few Wnt inhibitors are approved for clinical use.Additionally,the clinical significa...Background:Although the constitutively activated Wnt/β-catenin signaling pathway plays vital roles in gastric cancer(GC)progression,few Wnt inhibitors are approved for clinical use.Additionally,the clinical significance of long non-coding RNAs(lncRNAs)in GC intraperitoneal dissemination(IPD)remains elusive.Here,we investigated the function and therapeutic potential of Wnt-transactivated lncRNA,colon cancer-associated transcript 5(CCAT5),in GC metastasis.Methods:LncRNA-sequencing assay was performed to document abun-dance changes of lncRNAs induced by Wnt family member 3A(Wnt3a)and degradation-resistantβ-catenin(S33Y mutated)in ascites-derived GC cells with low Wnt activity.Luciferase reporter,Chromatin immunoprecipitation(ChIP)-re-ChIP assays were performed to determine how CCAT5 was tran-scribed.The clinical significance of CCAT5 was examined in 2 cohorts of GC patients.The biological function of CCAT5 was investigated through gain-and loss-of-function studies.The molecular mechanism was explored through RNA-sequencing,mass spectrometry,and CRISPR/Cas9-knocknout system.The therapeutic potential of CCAT5 was examined through RNAi-based cell xenograft model and patient-derived xenograft(PDX)model of IPD.Results:WeidentifiedanovelWnt-regulatedlncRNA,CCAT5,whichwastrans-activated by theβ-catenin/transcription factor 3(TCF3)complex.CCAT5 was significantly upregulated in GC and predicted poor prognosis.Functional studies confirmed the promotive role of CCAT5 in GC growth and metastasis.Mechanis-tically,CCAT5 bound to the C-end domain of signal transducer and activator of transcription 3(STAT3)and blocks Src homology 2 domain-containing protein tyrosine phosphatase 1(SHP-1)-mediated STAT3 Y705 dephosphorylation,leading to STAT3 nuclear entry and transactivation,thus accelerating GC progression.Furthermore,we demonstrated that both Wnt3a andβ-catenin acted as activa-tor of STAT3 signaling pathway,and the interplay between CCAT5 and STAT3 was functionally essential for Wnt-drived STAT3 signaling and tumor evolu-tion.Finally,we revealed in vivo si-CCAT5 selectively attenuated growth and metastasis of Wnt high GC,but not Wnt low GC.The combination of si-CCAT5 and oxaliplatin displayed obvious synergistictherapeuticeffectson Wnt high PDX mice.Conclusions:We identified a novel Wnt-transactivated lncRNA,CCAT5.Our study revealed a mechanism of STAT3 signaling regulation via canonical Wnt signaling and the functional significance of CCAT5 as critical mediator.We pro-vided conceptual advance that lncRNAs serve as therapeutic targets reversing GC progression.展开更多
The combination of high efficiency and environmental stability is vital to promote the commercial appli-cations of microwave absorption(MA)materials,yet remains challenging in the absence of facile routes.Here,we put ...The combination of high efficiency and environmental stability is vital to promote the commercial appli-cations of microwave absorption(MA)materials,yet remains challenging in the absence of facile routes.Here,we put forward a graphene-reinforced construct approach for one-pot synthesis of 3D intercon-nected magnetic-dielectric frameworks via pre-functionalization and subsequent assembly.Multiple in-teractions among discrete precursors are capable of manipulating the confined growth and interfacial self-assembly.Significant enhancements in MA properties are triggered in a straightforward manner us-ing ultralow feeding fractions of graphene oxide nanosheet.The minimum reflection loss is up to-60.1 dB(99.9999%wave absorption)and the effective absorption bandwidth reaches 5.9 GHz(almost covering the Ku band).Remarkably,based on the optimization by ultralow concentrations of graphene,the as-prepared nanoarchitecture simultaneously integrates strong absorption,broad bandwidth,and low matching thick-ness.The embedded graphene nanosheets serve as high-speed electron transmission channels and hollow resonance cavities,facilitating multimode attenuations and impedance-matching characteristics.Mean-while,the graphene-reinforced framework suppresses the corrosion of magnetic components,whose cor-rosion rate reduces by an order of magnitude.This study provides a simple procedure to boost magnetic-dielectric absorbers for comprehensive MA performances and enhanced corrosion resistance.展开更多
Zero-valent iron(ZVI),an ideal reductant treating persistent pollutants,is hampered by issues like corrosion,passivation,and suboptimal utilization.Recent advancements in nonmetallic modified ZVI(NM-ZVI)show promising...Zero-valent iron(ZVI),an ideal reductant treating persistent pollutants,is hampered by issues like corrosion,passivation,and suboptimal utilization.Recent advancements in nonmetallic modified ZVI(NM-ZVI)show promising potential in circumventing these challenges by modifying ZVI's surface and internal physicochemical properties.Despite its promise,a thorough synthesis of research advancements in this domain remains elusive.Here we review the innovative methodologies,regulatory principles,and reduction-centric mechanisms underpinning NM-ZVI's effectiveness against two prevalent persistent pollutants:halogenated organic compounds and heavy metals.We start by evaluating different nonmetallic modification techniques,such as liquid-phase reduction,mechanical ball milling,and pyrolysis,and their respective advantages.The discussion progresses towards a critical analysis of current strategies and mechanisms used for NM-ZVI to enhance its reactivity,electron selectivity,and electron utilization efficiency.This is achieved by optimizing the elemental compositions,content ratios,lattice constants,hydrophobicity,and conductivity.Furthermore,we propose novel approaches for augmenting NM-ZVI's capability to address complex pollution challenges.This review highlights NM-ZVI's potential as an alternative to remediate water environments contaminated with halogenated organic compounds or heavy metals,contributing to the broader discourse on green remediation technologies.展开更多
The creation of an environmentally friendly synthesis method for silver nanomaterials(Ag-NPs)is an urgent concern for sustainable nanotechnology development.In the present study,a novel straightforward and green metho...The creation of an environmentally friendly synthesis method for silver nanomaterials(Ag-NPs)is an urgent concern for sustainable nanotechnology development.In the present study,a novel straightforward and green method for the preparation of silver nanoparti-cle/reduced graphene oxide(AgNP/rGO)composites was successfully developed through the combination of phytosynthesis,continuous flow synthesis and microwave-assistance.Oriental persimmon(Diospyros kaki Thunb.)extracts were used as both plant reducing and capping agents for fast online synthesis of AgNP/rGO composites.The experimental param-eters were optimized and the morphologies of the prepared materials were investigated.The characterization results reveal that spherical AgNPs were quickly synthesized and uni-formly dispersed on rGO sheets using the proposed online system.Fourier transform in-frared spectroscopy analysis confirmed that phenols,flavonoids,and other substances in the plant extracts played a decisive role in the synthesis of AgNP/rGO composites.Using sodium borohydride(NaBH4)degradation of p-nitrophenol(4-NP)as a model,the catalytic activity of the prepared AgNP/rGO materials was evaluated.The complete degradation of 4-NP was achieved within 12 min through the use of AgNP/rGO materials,and the compos-ite had a much better catalytic activity than the bare AgNPs and rGO had.Compared with the conventional chemical method,our online method is facile,fast,cost-efficient,and en-vironmentally friendly.展开更多
As one of the deadliest viruses,Ebola virus(EBOV)causes lethal hemorrhagic fevers in humans and nonhuman primates.The suppression of innate immunity leads to robust systemic virus replication of EBOV,leading to enhanc...As one of the deadliest viruses,Ebola virus(EBOV)causes lethal hemorrhagic fevers in humans and nonhuman primates.The suppression of innate immunity leads to robust systemic virus replication of EBOV,leading to enhanced transmission.However,the mechanism of EBOV-host interaction is not fully understood.Here,we identified multiple dysregulated genes in early stage of EBOV infection through transcriptomic analysis,which are highly clustered to Jak-STAT signaling.EBOV VP35 and VP30 were found to inhibit type I interferon(IFN)signaling.Moreover,exogenous expression of VP35 blocks the phosphorylation of endogenous STAT1,and suppresses nuclear translocation of STAT1.Using serial truncated mutations of VP35,N-terminal 1–220amino acid residues of VP35 were identified to be essential for blocking on type I IFN signaling.Remarkably,VP35 of EBOV suppresses type I IFN signaling more efficiently than those of Bundibugyo virus(BDBV)and Marburg virus(MARV),resulting in stable replication to facilitate the pathogenesis.Altogether,this study enriches understanding on EBOV evasion of innate immune response,and provides insights into the interplay between filoviruses and host.展开更多
The Dux gene plays an important role in mouse embryo development(De Iaco et al.,2017;Hendrickson et al.,2017;Whiddon et al.,2017).It participates in the maternal-to-zygotic transition(MTZ),which mainly includes matern...The Dux gene plays an important role in mouse embryo development(De Iaco et al.,2017;Hendrickson et al.,2017;Whiddon et al.,2017).It participates in the maternal-to-zygotic transition(MTZ),which mainly includes maternal transcript degradation and zygotic genome activation(ZGA)and is the key process for embryonic development.Approximately 11-100 copies of the DUX4 gene form a tandem cluster in the human genome(Snider et al.,2009,2010).展开更多
Presently,most smart cities face massive traffic issues every day.The smart cities’significant challenge is the traffic control system,wherein some places are automated and cost-effective.In this manuscript,cloud-ass...Presently,most smart cities face massive traffic issues every day.The smart cities’significant challenge is the traffic control system,wherein some places are automated and cost-effective.In this manuscript,cloud-assisted Internet of things Intelligent Transportation System(CIoT-ITS)is proposed to overcome traffic management’s challenges.Here,the IoT sensor integrated camera is installed in every traffic signal corner to monitor the vehicle’s flow.Further,the optimised vehicle flow data is sent to the cloud processes.The data from the various signal corners runs an algorithm to detect traffic direction and controls the signal lights.The alert notification is sent to the nearest traffic control room during traffic congestion using IoT sensors.Simulation analysis proved that the proposed CIoT-ITS could monitor and manage the vehicle flow successfully and automatically.The proposed system has been validated based on the optimisation parameter,which outperforms conventional methods.展开更多
基金Project supported by the National Key R&D Program of China (Grant No.2022YFA1405500)the National Natural Science Foundation of China (Grant Nos.52372257 and 52072188)+1 种基金the Program for Changjiang Scholars and Innovative Research Team in University (Grant No.IRT-15R23)the Zhejiang Provincial Science and Technology Innovation Team (Grant No.2021R01004)。
文摘Element superconductors with the single atoms provide clean and fundamental platforms for studying superconductivity.Although elements with d electrons are usually not favored by conventional BCS,the record superconducting critical temperature(T_(c))in element scandium(S_(c))has further ignited the intensive attention on transition metals.The element molybdenum(M_o)with a half-full d-orbital is studied in our work,which fills the gap in the study of Mo under high pressure and investigates the pressure dependence of superconductivity.In this work,we exhibit a robust superconductivity of Mo in the pressure range of 5 GPa to 160 GPa via high-pressure electrical transport measurements,the T_(c) varies at a rate of0.013 K/GPa to 8.56 K at 160 GPa.Moreover,the superconductivity is evidenced by the T_(c) shifting to lower temperature under applied magnetic fields,and the upper critical magnetic fields are extrapolated by the WHH equation and GL equation;the results indicate that the maximum upper critical magnetic field is estimated to be 8.24 T at 137 GPa.We further investigate the superconducting mechanism of Mo,the theoretical calculations indicate that the superconductivity can be attributed to the strong coupling between the electrons from the partially filled d band and the phonons from the frequency zone of 200-400 cm^(-1).
基金funded by Science and Technology Major Project of China National Offshore Oil Corporation(CNOOC-KJ 135 ZDXM36 TJ 08TJ).
文摘Interpreting reservoir properties through log data and logging responses in complex strata is critical for efficient petroleum exploitation,particularly for metamorphic rocks.However,the unsatisfactory accuracy of such interpretations in complex reservoirs has hindered their widespread application,resulting in severe inconvenience.In this study,we proposed a multi-mineral model based on the least-square method and an optimal principle to interpret the logging responses and petrophysical properties of complex hydrocarbon reservoirs.We began by selecting the main minerals based on a comprehensive analysis of log data,X-ray diffraction,petrographic thin sections and scanning electron microscopy(SEM)for three wells in the Bozhong 19-6 structural zone.In combination of the physical properties of these minerals with logging responses,we constructed the multi-mineral model,which can predict the log curves,petrophysical properties and mineral profile.The predicted and measured log data are evaluated using a weighted average error,which shows that the multi-mineral model has satisfactory prediction performance with errors below 11%in most intervals.Finally,we apply the model to a new well“x”in the Bozhong 19-6 structural zone,and the predicted logging responses match well with measured data with the weighted average error below 11.8%for most intervals.Moreover,the lithology is dominated by plagioclase,K-feldspar,and quartz as shown by the mineral profile,which correlates with the lithology of the Archean metamorphic rocks in this region.It is concluded that the multi-mineral model presented in this study provides reasonable methods for interpreting log data in complex metamorphic hydrocarbon reservoirs and could assist in efficient development in the future.
基金supported by the National Natural Science Foundation of China(52272022)Key Program of Natural Science Foundation of Hubei Province(2021CFA071).
文摘Refractory materials,as the crucial foundational materials in high-temperature industrial processes such as metallurgy and construction,are inevitably subjected to corrosion and penetration from high-temperature media during their service.Traditionally,observing the in-situ degradation process of refractory materials in complex high-temperature environments has presented challenges.Post-corrosion analysis are commonly employed to assess the slag resistance of refractory materials and understand the corrosion mechanisms.However,these methods often lack information on the process under the conditions of thermal-chemical-mechanical coupling,leading to potential biases in the analysis results.In this work,we developed a non-contact high-temperature machine vision technology by the integrating Digital Image Correlation(DIC)with a high-temperature visualization system to explore the corrosion behavior of Al2O3-SiO2 refractories against molten glass and Al2O3-MgO dry ramming refractories against molten slag at different temperatures.This technology enables realtime monitoring of the 2D or 3D overall strain and average strain curves of the refractory materials and provides continuous feedback on the progressive corrosion of the materials under the coupling conditions of thermal,chemical,and mechanical factors.Therefore,it is an innovative approach for evaluating the service behavior and performance of refractory materials,and is expected to promote the digitization and intelligence of the refractory industry,contributing to the optimization and upgrading of product performance.
基金This research was financially supported by the National Key Research and Development Program of China(grant no.2018YFD1000107)the National Natural Science Foundation of China(grant nos.31772259,31630065,and 31521092)+1 种基金the Fundamental Research Funds forthe Central Univer sities(grant no.2662019PY044)the China Agriculture Research System of MOF and MARA and the Hubei Provincial Natural Science Foundation of China(2020CFB532).
文摘Self-incompatibility(SI)substantially restricts the yield and quality of citrus.Therefore,breeding and analyzing selfcompatible germplasm is of great theoretical and practical signi ficance for citrus.Here,we focus on the mechanism of a self-compatibility mutation in‘Guiyou No.1'pummelo(Citrus maxima),which is a spontaneous mutant of‘Shatian’pummelo(Citrus maxima,self-incompatibility).The rate of fruit set and the growth of pollen tubes in the pistil con firmed that a spontaneous mutation in the pistil is responsible for the self-compatibility of‘Guiyou No.1'.Segregation ratios of the S genotype in progeny,expression analysis,and western blotting validated that the reduced levels of S_(2)-RNase mRNA contribute to the loss of SI in‘Guiyou No.1'.Furthermore,we report a phased assembly of the‘Guiyou No.1'pummelo genome and obtained two complete and well-annotated S haplotypes.Coupled with an analysis of SV variations,methylation levels,and gene expression,we identi fied a candidate gene(CgHB40),that may in fluence the regulation of the S/^RNase promoter.Our data provide evidence that a mutation that affects the pistilled to the loss of SI in‘Guiyou No.1'by in fluencing a poorly understood mechanism that affects transcriptional regulation.This work signi ficantly advances our understanding of the genetic basis of the SI system in citrus and provides information on the regulation of S-RNase genes.
基金This study was approved by the Clinical Research Ethics Committee of Fudan University Shanghai Cancer Cen-ter(No.050432-4-1911D)Written informed consents were received from all patients.All animal studies were con-ducted in accordance with the Animal Care Guidelines of FUSCC(No.2020JS-139).
文摘Background:Although the constitutively activated Wnt/β-catenin signaling pathway plays vital roles in gastric cancer(GC)progression,few Wnt inhibitors are approved for clinical use.Additionally,the clinical significance of long non-coding RNAs(lncRNAs)in GC intraperitoneal dissemination(IPD)remains elusive.Here,we investigated the function and therapeutic potential of Wnt-transactivated lncRNA,colon cancer-associated transcript 5(CCAT5),in GC metastasis.Methods:LncRNA-sequencing assay was performed to document abun-dance changes of lncRNAs induced by Wnt family member 3A(Wnt3a)and degradation-resistantβ-catenin(S33Y mutated)in ascites-derived GC cells with low Wnt activity.Luciferase reporter,Chromatin immunoprecipitation(ChIP)-re-ChIP assays were performed to determine how CCAT5 was tran-scribed.The clinical significance of CCAT5 was examined in 2 cohorts of GC patients.The biological function of CCAT5 was investigated through gain-and loss-of-function studies.The molecular mechanism was explored through RNA-sequencing,mass spectrometry,and CRISPR/Cas9-knocknout system.The therapeutic potential of CCAT5 was examined through RNAi-based cell xenograft model and patient-derived xenograft(PDX)model of IPD.Results:WeidentifiedanovelWnt-regulatedlncRNA,CCAT5,whichwastrans-activated by theβ-catenin/transcription factor 3(TCF3)complex.CCAT5 was significantly upregulated in GC and predicted poor prognosis.Functional studies confirmed the promotive role of CCAT5 in GC growth and metastasis.Mechanis-tically,CCAT5 bound to the C-end domain of signal transducer and activator of transcription 3(STAT3)and blocks Src homology 2 domain-containing protein tyrosine phosphatase 1(SHP-1)-mediated STAT3 Y705 dephosphorylation,leading to STAT3 nuclear entry and transactivation,thus accelerating GC progression.Furthermore,we demonstrated that both Wnt3a andβ-catenin acted as activa-tor of STAT3 signaling pathway,and the interplay between CCAT5 and STAT3 was functionally essential for Wnt-drived STAT3 signaling and tumor evolu-tion.Finally,we revealed in vivo si-CCAT5 selectively attenuated growth and metastasis of Wnt high GC,but not Wnt low GC.The combination of si-CCAT5 and oxaliplatin displayed obvious synergistictherapeuticeffectson Wnt high PDX mice.Conclusions:We identified a novel Wnt-transactivated lncRNA,CCAT5.Our study revealed a mechanism of STAT3 signaling regulation via canonical Wnt signaling and the functional significance of CCAT5 as critical mediator.We pro-vided conceptual advance that lncRNAs serve as therapeutic targets reversing GC progression.
基金support from the National Natural Science Foundation of China(No.52073039)Major Special Projects of Sichuan Province(Nos.2019ZDZX0027 and 2019ZDZX0016).
文摘The combination of high efficiency and environmental stability is vital to promote the commercial appli-cations of microwave absorption(MA)materials,yet remains challenging in the absence of facile routes.Here,we put forward a graphene-reinforced construct approach for one-pot synthesis of 3D intercon-nected magnetic-dielectric frameworks via pre-functionalization and subsequent assembly.Multiple in-teractions among discrete precursors are capable of manipulating the confined growth and interfacial self-assembly.Significant enhancements in MA properties are triggered in a straightforward manner us-ing ultralow feeding fractions of graphene oxide nanosheet.The minimum reflection loss is up to-60.1 dB(99.9999%wave absorption)and the effective absorption bandwidth reaches 5.9 GHz(almost covering the Ku band).Remarkably,based on the optimization by ultralow concentrations of graphene,the as-prepared nanoarchitecture simultaneously integrates strong absorption,broad bandwidth,and low matching thick-ness.The embedded graphene nanosheets serve as high-speed electron transmission channels and hollow resonance cavities,facilitating multimode attenuations and impedance-matching characteristics.Mean-while,the graphene-reinforced framework suppresses the corrosion of magnetic components,whose cor-rosion rate reduces by an order of magnitude.This study provides a simple procedure to boost magnetic-dielectric absorbers for comprehensive MA performances and enhanced corrosion resistance.
基金supported by the NSFC-JSPS joint research program(No.51961145202)the National Natural Science Foundation of China(No.52370163,52321005,and 52293443)the State Key Laboratory of Urban Water Resource and Environment(Harbin Institute of Technology)(No.2022TS42).
文摘Zero-valent iron(ZVI),an ideal reductant treating persistent pollutants,is hampered by issues like corrosion,passivation,and suboptimal utilization.Recent advancements in nonmetallic modified ZVI(NM-ZVI)show promising potential in circumventing these challenges by modifying ZVI's surface and internal physicochemical properties.Despite its promise,a thorough synthesis of research advancements in this domain remains elusive.Here we review the innovative methodologies,regulatory principles,and reduction-centric mechanisms underpinning NM-ZVI's effectiveness against two prevalent persistent pollutants:halogenated organic compounds and heavy metals.We start by evaluating different nonmetallic modification techniques,such as liquid-phase reduction,mechanical ball milling,and pyrolysis,and their respective advantages.The discussion progresses towards a critical analysis of current strategies and mechanisms used for NM-ZVI to enhance its reactivity,electron selectivity,and electron utilization efficiency.This is achieved by optimizing the elemental compositions,content ratios,lattice constants,hydrophobicity,and conductivity.Furthermore,we propose novel approaches for augmenting NM-ZVI's capability to address complex pollution challenges.This review highlights NM-ZVI's potential as an alternative to remediate water environments contaminated with halogenated organic compounds or heavy metals,contributing to the broader discourse on green remediation technologies.
基金This study was supported by the National Natural Science Foundation of China(Nos.21620102008,and 21777040)the Beijing Natural Science Foundation(No.8182051)the Fundamental Research Funds for the Central Universities(No.2017ZZD07).
文摘The creation of an environmentally friendly synthesis method for silver nanomaterials(Ag-NPs)is an urgent concern for sustainable nanotechnology development.In the present study,a novel straightforward and green method for the preparation of silver nanoparti-cle/reduced graphene oxide(AgNP/rGO)composites was successfully developed through the combination of phytosynthesis,continuous flow synthesis and microwave-assistance.Oriental persimmon(Diospyros kaki Thunb.)extracts were used as both plant reducing and capping agents for fast online synthesis of AgNP/rGO composites.The experimental param-eters were optimized and the morphologies of the prepared materials were investigated.The characterization results reveal that spherical AgNPs were quickly synthesized and uni-formly dispersed on rGO sheets using the proposed online system.Fourier transform in-frared spectroscopy analysis confirmed that phenols,flavonoids,and other substances in the plant extracts played a decisive role in the synthesis of AgNP/rGO composites.Using sodium borohydride(NaBH4)degradation of p-nitrophenol(4-NP)as a model,the catalytic activity of the prepared AgNP/rGO materials was evaluated.The complete degradation of 4-NP was achieved within 12 min through the use of AgNP/rGO materials,and the compos-ite had a much better catalytic activity than the bare AgNPs and rGO had.Compared with the conventional chemical method,our online method is facile,fast,cost-efficient,and en-vironmentally friendly.
基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB0490000)the National Natural Science Foundation of China(82202521).
文摘As one of the deadliest viruses,Ebola virus(EBOV)causes lethal hemorrhagic fevers in humans and nonhuman primates.The suppression of innate immunity leads to robust systemic virus replication of EBOV,leading to enhanced transmission.However,the mechanism of EBOV-host interaction is not fully understood.Here,we identified multiple dysregulated genes in early stage of EBOV infection through transcriptomic analysis,which are highly clustered to Jak-STAT signaling.EBOV VP35 and VP30 were found to inhibit type I interferon(IFN)signaling.Moreover,exogenous expression of VP35 blocks the phosphorylation of endogenous STAT1,and suppresses nuclear translocation of STAT1.Using serial truncated mutations of VP35,N-terminal 1–220amino acid residues of VP35 were identified to be essential for blocking on type I IFN signaling.Remarkably,VP35 of EBOV suppresses type I IFN signaling more efficiently than those of Bundibugyo virus(BDBV)and Marburg virus(MARV),resulting in stable replication to facilitate the pathogenesis.Altogether,this study enriches understanding on EBOV evasion of innate immune response,and provides insights into the interplay between filoviruses and host.
基金supported by the National Key R&D Program of China(2017YFC1002003)the project sponsored by the National Natural Science Foundation of China(31601197)。
文摘The Dux gene plays an important role in mouse embryo development(De Iaco et al.,2017;Hendrickson et al.,2017;Whiddon et al.,2017).It participates in the maternal-to-zygotic transition(MTZ),which mainly includes maternal transcript degradation and zygotic genome activation(ZGA)and is the key process for embryonic development.Approximately 11-100 copies of the DUX4 gene form a tandem cluster in the human genome(Snider et al.,2009,2010).
文摘Presently,most smart cities face massive traffic issues every day.The smart cities’significant challenge is the traffic control system,wherein some places are automated and cost-effective.In this manuscript,cloud-assisted Internet of things Intelligent Transportation System(CIoT-ITS)is proposed to overcome traffic management’s challenges.Here,the IoT sensor integrated camera is installed in every traffic signal corner to monitor the vehicle’s flow.Further,the optimised vehicle flow data is sent to the cloud processes.The data from the various signal corners runs an algorithm to detect traffic direction and controls the signal lights.The alert notification is sent to the nearest traffic control room during traffic congestion using IoT sensors.Simulation analysis proved that the proposed CIoT-ITS could monitor and manage the vehicle flow successfully and automatically.The proposed system has been validated based on the optimisation parameter,which outperforms conventional methods.