Singular spectrum analysis is widely used in geodetic time series analysis.However,when extracting time-varying periodic signals from a large number of Global Navigation Satellite System(GNSS)time series,the selection...Singular spectrum analysis is widely used in geodetic time series analysis.However,when extracting time-varying periodic signals from a large number of Global Navigation Satellite System(GNSS)time series,the selection of appropriate embedding window size and principal components makes this method cumbersome and inefficient.To improve the efficiency and accuracy of singular spectrum analysis,this paper proposes an adaptive singular spectrum analysis method by combining spectrum analysis with a new trace matrix.The running time and correlation analysis indicate that the proposed method can adaptively set the embedding window size to extract the time-varying periodic signals from GNSS time series,and the extraction efficiency of a single time series is six times that of singular spectrum analysis.The method is also accurate and more suitable for time-varying periodic signal analysis of global GNSS sites.展开更多
This article presents a novel and flexible bubble modelling technique for multi-fluid simulations using a volume fraction representation. By combining the volume fraction data obtained from a primary multi-fluid simul...This article presents a novel and flexible bubble modelling technique for multi-fluid simulations using a volume fraction representation. By combining the volume fraction data obtained from a primary multi-fluid simulation with simple and efficient secondary bubble simulation, a range of real-world bubble phenomena are captured with a high degree of physical realism, including large bubble deformation,sub-cell bubble motion, bubble stacking over the liquid surface, bubble volume change, dissolving of bubbles,etc. Without any change in the primary multi-fluid simulator, our bubble modelling approach is applicable to any multi-fluid simulator based on the volume fraction representation.展开更多
Realistic animation of various interactions between multiple fluids, possibly undergoing phase change, is a challenging task in computer graphics. The visual scope of multi-phase multi-fluid phenomena covers complex t...Realistic animation of various interactions between multiple fluids, possibly undergoing phase change, is a challenging task in computer graphics. The visual scope of multi-phase multi-fluid phenomena covers complex tangled surface structures and rich color variations, which can greatly enhance visual effect in graphics applications. Describing such phenomena requires more complex models to handle challenges involving the calculation of interactions, dynamics and spatial distribution of multiple phases, which are often involved and hard to obtain real-time performance. Recently, a diverse set of algorithms have been introduced to implement the complex multi-fluid phenomena based on the governing physical laws and novel discretization methods to accelerate the overall computation while ensuring numerical stability. By sorting through the target phenomena of recent research in the broad subject of multiple fluids, this state-of-the-art report summarizes recent advances on multi-fluid simulation in computer graphics.展开更多
Physics-based fluid simulation has played an increasingly important role in the computer graphics community.Recent methods in this area have greatly improved the generation of complex visual effects and its computatio...Physics-based fluid simulation has played an increasingly important role in the computer graphics community.Recent methods in this area have greatly improved the generation of complex visual effects and its computational efficiency.Novel techniques have emerged to deal with complex boundaries,multiphase fluids,gas-liquid interfaces,and fine details.The parallel use of machine learning,image processing,and fluid control technologies has brought many interesting and novel research perspectives.In this survey,we provide an introduction to theoretical concepts underpinning physics-based fuid simulation and their practical implementation,with the aim for it to serve as a guide for both newcomers and seasoned researchers to explore the field of physics-based fuid simulation,with a focus on developments in the last decade.Driven by the distribution of recent publications in the field,we structure our survey to cover physical background;discretization approaches;computational methods that address scalability;fuid interactions with other materials and interfaces;and methods for expressive aspects of surface detail and control.From a practical perspective,we give an overview of existing implementations available for the above methods.展开更多
基金supported by the National Natural Science Foundation of China(Grants:42204006,42274053,42030105,and 41504031)the Open Research Fund Program of the Key Laboratory of Geospace Environment and Geodesy,Ministry of Education,China(Grants:20-01-03 and 21-01-04)。
文摘Singular spectrum analysis is widely used in geodetic time series analysis.However,when extracting time-varying periodic signals from a large number of Global Navigation Satellite System(GNSS)time series,the selection of appropriate embedding window size and principal components makes this method cumbersome and inefficient.To improve the efficiency and accuracy of singular spectrum analysis,this paper proposes an adaptive singular spectrum analysis method by combining spectrum analysis with a new trace matrix.The running time and correlation analysis indicate that the proposed method can adaptively set the embedding window size to extract the time-varying periodic signals from GNSS time series,and the extraction efficiency of a single time series is six times that of singular spectrum analysis.The method is also accurate and more suitable for time-varying periodic signal analysis of global GNSS sites.
基金supported by the National High Technology Research and Development Program of China (No. 2013AA013903)the National Natural Science Foundation of China (No. 61120106007)+3 种基金Research Grant of Beijing Higher Institution Engineering Research CenterTsinghua University Initiative Scientific Research Programsupported in part by the U.S. National Science Foundationthe University of North Carolina Arts & Sciences Foundation
文摘This article presents a novel and flexible bubble modelling technique for multi-fluid simulations using a volume fraction representation. By combining the volume fraction data obtained from a primary multi-fluid simulation with simple and efficient secondary bubble simulation, a range of real-world bubble phenomena are captured with a high degree of physical realism, including large bubble deformation,sub-cell bubble motion, bubble stacking over the liquid surface, bubble volume change, dissolving of bubbles,etc. Without any change in the primary multi-fluid simulator, our bubble modelling approach is applicable to any multi-fluid simulator based on the volume fraction representation.
基金This work is supported by the National Key Research and Development Program of China under Grant No. 2017YFB1002701, the National Natural Science Foundation of China under Grant No. 61602265. The authors would also like to thank the support from the Engineering Research Network Wales and the Royal Academy of Engineering, UK.
文摘Realistic animation of various interactions between multiple fluids, possibly undergoing phase change, is a challenging task in computer graphics. The visual scope of multi-phase multi-fluid phenomena covers complex tangled surface structures and rich color variations, which can greatly enhance visual effect in graphics applications. Describing such phenomena requires more complex models to handle challenges involving the calculation of interactions, dynamics and spatial distribution of multiple phases, which are often involved and hard to obtain real-time performance. Recently, a diverse set of algorithms have been introduced to implement the complex multi-fluid phenomena based on the governing physical laws and novel discretization methods to accelerate the overall computation while ensuring numerical stability. By sorting through the target phenomena of recent research in the broad subject of multiple fluids, this state-of-the-art report summarizes recent advances on multi-fluid simulation in computer graphics.
基金funded by National Key R&D Program of China(No.2022ZD0118001)National Natural Science Foundation of China(Nos.62376025 and 62332017)+1 种基金Horizon 2020-Marie SklodowskaCurie Action-Individual Fellowships(No.895941)Guangdong Basic and Applied Basic Research Foundation(No.2023A1515030177)。
文摘Physics-based fluid simulation has played an increasingly important role in the computer graphics community.Recent methods in this area have greatly improved the generation of complex visual effects and its computational efficiency.Novel techniques have emerged to deal with complex boundaries,multiphase fluids,gas-liquid interfaces,and fine details.The parallel use of machine learning,image processing,and fluid control technologies has brought many interesting and novel research perspectives.In this survey,we provide an introduction to theoretical concepts underpinning physics-based fuid simulation and their practical implementation,with the aim for it to serve as a guide for both newcomers and seasoned researchers to explore the field of physics-based fuid simulation,with a focus on developments in the last decade.Driven by the distribution of recent publications in the field,we structure our survey to cover physical background;discretization approaches;computational methods that address scalability;fuid interactions with other materials and interfaces;and methods for expressive aspects of surface detail and control.From a practical perspective,we give an overview of existing implementations available for the above methods.