To compensate the service providers who have paid billions of dollars to use spectrum and to satisfy secondary users' requirements in cognitive radios, a Non-cooperative Power Control Game and Pricing algorithm (N...To compensate the service providers who have paid billions of dollars to use spectrum and to satisfy secondary users' requirements in cognitive radios, a Non-cooperative Power Control Game and Pricing algorithm (NPGP) is proposed. Simulation results show that the proposed algorithm can regulate the secondary users' transmitter powers, optimally allocate radio resource and increase the total throughput effectively.展开更多
To regulate the transmit-power and enhance the total throughput, a novel Transmit Power Control Game (TPCG) algorithm and an adaptive Modulation TPCG (M-TPCG) algorithm which combine bandwidth allocation, adaptive mod...To regulate the transmit-power and enhance the total throughput, a novel Transmit Power Control Game (TPCG) algorithm and an adaptive Modulation TPCG (M-TPCG) algorithm which combine bandwidth allocation, adaptive modulation and transmit-power control based on Space Time Block Coding (STBC) OFDM-CDMA system are designed and a cross-layer framework of database sharing is proposed. Simulation results show that the TPCG algorithm can regulate their transmitter powers and enhance the total throughput effectively, M-TPCG algorithm can achieve maximal system throughput. The performance of the cognitive radio system is improved obviously.展开更多
基金National Natural Science Foundation of China (No.60772062)the Key Projects for Science and Technology of MOE (No.206055)the Key Basic Re-search Projects for the Natural Science of Jiangsu Colleges (No.06KJA51001).
文摘To compensate the service providers who have paid billions of dollars to use spectrum and to satisfy secondary users' requirements in cognitive radios, a Non-cooperative Power Control Game and Pricing algorithm (NPGP) is proposed. Simulation results show that the proposed algorithm can regulate the secondary users' transmitter powers, optimally allocate radio resource and increase the total throughput effectively.
基金Supported by National Natural Science Foundation of China (No.60772062)the Key Projects for Science and Technology of MOE (No.206055)the Key Basic Re-search Projects for the Natural Science of Jiangsu Colleges (No.06KJA51001).
文摘To regulate the transmit-power and enhance the total throughput, a novel Transmit Power Control Game (TPCG) algorithm and an adaptive Modulation TPCG (M-TPCG) algorithm which combine bandwidth allocation, adaptive modulation and transmit-power control based on Space Time Block Coding (STBC) OFDM-CDMA system are designed and a cross-layer framework of database sharing is proposed. Simulation results show that the TPCG algorithm can regulate their transmitter powers and enhance the total throughput effectively, M-TPCG algorithm can achieve maximal system throughput. The performance of the cognitive radio system is improved obviously.