期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Whole petroleum system and ordered distribution pattern of conventional and unconventional oil and gas reservoirs 被引量:20
1
作者 cheng-zao jia Xiong-Qi Pang Yan Song 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期1-19,共19页
The classical source-to-trap petroleum system concept only considers the migration and accumulation of conventional oil and gas in traps driven dominantly by buoyance in a basin,although revised and improved,even some... The classical source-to-trap petroleum system concept only considers the migration and accumulation of conventional oil and gas in traps driven dominantly by buoyance in a basin,although revised and improved,even some new concepts as composite petroleum system,total petroleum system,total composite petroleum system,were proposed,but they do not account for the vast unconventional oil and gas reservoirs within the system,which is not formed and distributed in traps dominantly by buoyancedriven.Therefore,the petroleum system concept is no longer adequate in dealing with all the oil and gas accumulations in a basin where significant amount of the unconventional oil and gas resources are present in addition to the conventional oil and gas accumulations.This paper looked into and analyzed the distribution characteristics of conventional and unconventional oil/gas reservoirs and their differences and correlations in petroliferous basins in China and North America,and then proposed whole petroleum system(WPS)concept,the WPS is defined as a natural system that encompasses all the conventional and unconventional oil and gas,reservoirs and resources originated from organic matter in source rocks,the geological elements and processes involving the formation,evolution,and distribution of these oil and gas,reservoirs and resources.It is found in the WPS that there are three kinds of hydrocarbons dynamic fields,three kinds of original hydrocarbons,three kinds of reservoir rocks,and the coupling of these three essential elements lead to the basic ordered distribution model of shale oil/gas reservoirs contacting or interbeded with tight oil/gas reservoirs and separated conventional oil/gas reservoirs from source rocks upward,which is expressed as“S\T-C”.Abnormal conditions lead to other three special ordered distribution models:The first is that with shale oil/gas reservoirs separated from tight oil/gas reservoirs.The second is that with two direction ordered distributions from source upward and downward.The third is with lateral distribution from source outside. 展开更多
关键词 Conventional and unconventional oil and gas Petroleum system Whole petroleum system Hydrocarbon reservoirs ordered distribution model Fossil energy
下载PDF
Petroleum geology features and research developments of hydrocarbon accumulation in deep petroliferous basins 被引量:33
2
作者 Xiong-Qi Pang cheng-zao jia Wen-Yang Wang 《Petroleum Science》 SCIE CAS CSCD 2015年第1期1-53,共53页
As petroleum exploration advances and as most of the oil-gas reservoirs in shallow layers have been explored, petroleum exploration starts to move toward deep basins, which has become an inevitable choice. In this pap... As petroleum exploration advances and as most of the oil-gas reservoirs in shallow layers have been explored, petroleum exploration starts to move toward deep basins, which has become an inevitable choice. In this paper, the petroleum geology features and research progress on oil-gas reservoirs in deep petroliferous basins across the world are characterized by using the latest results of worldwide deep petroleum exploration. Research has demonstrated that the deep petroleum shows ten major geological features. (1) While oil-gas reservoirs have been discovered in many different types of deep petroliferous basins, most have been discovered in low heat flux deep basins. (2) Many types of petroliferous traps are developed in deep basins, and tight oil-gas reservoirs in deep basin traps are arousing increasing attention. (3) Deep petroleum normally has more natural gas than liquid oil, and the natural gas ratio increases with the burial depth. (4) The residual organic matter in deep source rocks reduces but the hydrocarbon expulsion rate and efficiency increase with the burial depth. (5) There are many types of rocks in deep hydrocarbon reservoirs, and most are clastic rocks and carbonates. (6) The age of deep hydrocarbon reservoirs is widely different, but those recently discovered are pre- dominantly Paleogene and Upper Paleozoic. (7) The porosity and permeability of deep hydrocarbon reservoirs differ widely, but they vary in a regular way with lithology and burial depth. (8) The temperatures of deep oil-gas reservoirs are widely different, but they typically vary with the burial depth and basin geothermal gradient. (9) The pressures of deep oil-gas reservoirs differ significantly, but they typically vary with burial depth, genesis, and evolu- tion period. (10) Deep oil-gas reservoirs may exist with or without a cap, and those without a cap are typically of unconventional genesis. Over the past decade, six major steps have been made in the understanding of deep hydrocarbon reservoir formation. (1) Deep petroleum in petroliferous basins has multiple sources and many dif- ferent genetic mechanisms. (2) There are high-porosity, high-permeability reservoirs in deep basins, the formation of which is associated with tectonic events and subsurface fluid movement. (3) Capillary pressure differences inside and outside the target reservoir are the principal driving force of hydrocarbon enrichment in deep basins. (4) There are three dynamic boundaries for deep oil-gas reservoirs; a buoyancy-controlled threshold, hydrocarbon accumulation limits, and the upper limit of hydrocarbon generation. (5) The formation and distribution of deep hydrocarbon res- ervoirs are controlled by free, limited, and bound fluid dynamic fields. And (6) tight conventional, tight deep, tight superimposed, and related reconstructed hydrocarbon reservoirs formed in deep-limited fluid dynamic fields have great resource potential and vast scope for exploration. Compared with middle-shallow strata, the petroleum geology and accumulation in deep basins are more complex, which overlap the feature of basin evolution in different stages. We recommend that further study should pay more attention to four aspects: (1) identification of deep petroleum sources and evaluation of their relative contributions; (2) preservation conditions and genetic mechanisms of deep high-quality reservoirs with high permeability and high porosity; (3) facies feature and transformation of deep petroleum and their potential distribution; and (4) economic feasibility evaluation of deep tight petroleum exploration and development. 展开更多
关键词 Petroliferous basin Deep petroleum geology features Hydrocarbon accumulation Petroleum exploration Petroleum resources
下载PDF
Evaluation and re-understanding of the global natural gas hydrate resources 被引量:13
3
作者 Xiong-Qi Pang Zhuo-Heng Chen +8 位作者 cheng-zao jia En-Ze Wang He-Sheng Shi Zhuo-Ya Wu Tao Hu Ke-Yu Liu Zheng-Fu Zhao Bo Pang Tong Wang 《Petroleum Science》 SCIE CAS CSCD 2021年第2期323-338,共16页
Natural gas hydrate(NGH)has been widely considered as an alternative to conventional oil and gas resources in the future energy resource supply since Trofimuk’s first resource assessment in 1973.At least 29 global es... Natural gas hydrate(NGH)has been widely considered as an alternative to conventional oil and gas resources in the future energy resource supply since Trofimuk’s first resource assessment in 1973.At least 29 global estimates have been published from various studies so far,among which 24 estimates are greater than the total conventional gas resources.If drawn in chronological order,the 29 historical resource estimates show a clear downward trend,reflecting the changes in our perception with respect to its resource potential with increasing our knowledge on the NGH with time.A time series of the 29 estimates was used to establish a statistical model for predict the future trend.The model produces an expected resource value of 41.46×1012 m3 at the year of 2050.The statistical trend projected future gas hydrate resource is only about 10%of total natural gas resource in conventional reservoir,consistent with estimates of global technically recoverable resources(TRR)in gas hydrate from Monte Carlo technique based on volumetric and material balance approaches.Considering the technical challenges and high cost in commercial production and the lack of competitive advantages compared with rapid growing unconventional and renewable resources,only those on the very top of the gas hydrate resource pyramid will be added to future energy supply.It is unlikely that the NGH will be the major energy source in the future. 展开更多
关键词 Natural gas hydrate Global gas hydrate resource Conventional oil and gas resource Renewable and sustainable energy Trend analysis method
下载PDF
Reduction of global natural gas hydrate(NGH)resource estimation and implications for the NGH development in the South China Sea 被引量:2
4
作者 Xiong-Qi Pang cheng-zao jia +10 位作者 Zhang-Xing Chen He-Sheng Shi Zhuo-Heng Chen Tao Hu Tong Wang Zhi Xu Xiao-Han Liu Xing-Wen Zhang En-Ze Wang Zhuo-Ya Wu Bo Pang 《Petroleum Science》 SCIE CAS CSCD 2022年第1期3-12,共10页
There have been at least 29 groups of estimates on the global natural gas hydrate(NGH)resource since1973,varying greatly with up to 10,000 times and showing a decreasing trend with time.For the South China Sea(SCS),35... There have been at least 29 groups of estimates on the global natural gas hydrate(NGH)resource since1973,varying greatly with up to 10,000 times and showing a decreasing trend with time.For the South China Sea(SCS),35 groups of estimations were conducted on NGH resource potential since 2000,while these estimates kept almost the same with time,varying between 60 and 90 billion tons of oil equivalent(toe).What are the key factors controlling the variation trend?What are the implications of these variations for the NGH development in the world and the SCS?By analyzing the investigation characteristics of NGH resources in the world,this study divided the evaluation process into six stages and confirmed four essential factors for controlling the variations of estimates.Results indicated that the reduction trend reflects an improved understanding of the NGH formation mechanism and advancement in the resource evaluation methods,and promoted more objective evaluation results.Furthermore,the analysis process and improved evaluation method was applied to evaluate the NGH resources in the SCS,showing the similar decreasing trend of NGH resources with time.By utilizing the decreasing trend model,the predicted recoverable resources in the world and the SCS are(205-500)×10^(12)m^(3)and(0.8-6.5)×10^(12)m^(3),respectively,accounting for 20%of the total conventional oil and gas resources.Recoverable NGH resource in the SCS is only about 4%-6%of the previous estimates of 60-90 billion toe.If extracted completely,it only can support the sustainable development of China for 7 years at the current annual consumption level of oil and gas.NGH cannot be the main energy resource in future due to its low resource potential and lack of advantages in recovery. 展开更多
关键词 Natural gas hydrate Resource evaluation South China Sea Global NGH resource Reduction trend in NGH resource
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部