期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Regulating^(*)COOH intermediate via amino alkylation engineering for exceptionally effective photocatalytic CO_(2) reduction
1
作者 chengcheng chen Qiaoyu Zhang +3 位作者 Fangting Liu Zhengguo Zhang Qiong Liu Xiaoming Fang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期282-291,共10页
Photocatalytic reduction of CO_(2) into fuel represents a promising approach for achieving carbon neutrality,while realizing high selectivity in this process is challenging due to uncontrollable reaction intermediate ... Photocatalytic reduction of CO_(2) into fuel represents a promising approach for achieving carbon neutrality,while realizing high selectivity in this process is challenging due to uncontrollable reaction intermediate and retarded desorption of target products.Engineering the interface microenvironment of catalysts has been proposed as a strategy to exert a significant influence on reaction outcomes,yet it remains a significant challenge.In this study,amino alkylation was successfully integrated into the melem unit of polymeric carbon nitrides(PCN),which could efficiently drive the photocatalytic CO_(2) reduction.Experimental characterization and theoretical calculations revealed that the introduction of amino alkylation lowers the energy barrier for CO_(2) reduction into^(*)COOH intermediate,transforming the adsorption of^(*)COOH intermediate from the endothermic to an exothermic process.Notably,the as-prepared materials demonstrated outstanding performance in photocatalytic CO_(2) reduction,yielding CO_(2)at a rate of 152.8μmol h^(-1) with a high selectivity of 95.4%and a quantum efficiency of 6.6%. 展开更多
关键词 Polymeric carbonnitride Regulate intermediate Photocatalytic CO_(2)reduction Amino alkylation ^(*)COOH adsorption
下载PDF
Recent advances in electrospun electrode materials for sodium-ion batteries 被引量:10
2
作者 Yao Wang Yukun Liu +6 位作者 Yongchang Liu Qiuyu Shen chengcheng chen Fangyuan Qiu Ping Li Lifang Jiao Xuanhui Qu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期225-241,共17页
Sodium-ion batteries(SIBs)have been considered as an ideal choice for the next generation large-scale energy storage applications owing to the rich sodium resources and the analogous working principle to that of lithi... Sodium-ion batteries(SIBs)have been considered as an ideal choice for the next generation large-scale energy storage applications owing to the rich sodium resources and the analogous working principle to that of lithium-ion batteries(LIBs).Nevertheless,the larger size and heavier mass of Na^(+)ion than those of Li^(+)ion often lead to sluggish reaction kinetics and inferior cycling life in SIBs compared to the LIB counterparts.The pursuit of promising electrode materials that can accommodate the rapid and stable Na-ion insertion/extraction is the key to promoting the development of SIBs toward a commercial prosperity.One-dimensional(1 D)nanomaterials demonstrate great prospects in boosting the rate and cycling performances because of their large active surface areas,high endurance for deformation stress,short ions diffusion channels,and oriented electrons transfer paths.Electrospinning,as a versatile synthetic technology,features the advantages of controllable preparation,easy operation,and mass production,has been widely applied to fabricate the 1 D nanostructured electrode materials for SIBs.In this review,we comprehensively summarize the recent advances in the sodium-storage cathode and anode materials prepared by electrospinning,discuss the effects of modulating the spinning parameters on the materials’micro/nano-structures,and elucidate the structure-performance correlations of the tailored electrodes.Finally,the future directions to harvest more breakthroughs in electrospun Na-storage materials are pointed out. 展开更多
关键词 Sodium-ion batteries ELECTROSPINNING Electrode materials NANOSTRUCTURES Structure-performance correlations
下载PDF
Amorphous Zr(OH)4 coated LiNi0.915Co0.075Al0.01O2 cathode material with enhanced electrochemical performance for lithium ion batteries 被引量:6
3
作者 Zhen Zhang Pengfei Zhou +4 位作者 Huanju Meng chengcheng chen Fangyi cheng Zhanliang Tao Jun chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第3期481-487,共7页
LiNiCoAlO(NCA) with Zr(OH)coating is demonstrated as high performance cathode material for lithium ion batteries(LIBs). The coated materials are synthesized via a simple dry coating method of NCA with Zr(OH)po... LiNiCoAlO(NCA) with Zr(OH)coating is demonstrated as high performance cathode material for lithium ion batteries(LIBs). The coated materials are synthesized via a simple dry coating method of NCA with Zr(OH)powders, and then characterized with scanning electron microscopy(SEM), transmission electron microscopy(TEM) and X-ray photoelectron spectroscopy(XPS). Experimental results show that amorphous Zr(OH)powders have been successfully coated on the surface of spherical NCA particles, exhibiting improved electrochemical performance. 0.50 wt% Zr(OH)coated NCA delivers a capacity of 197.6 mAh/g at the first cycle and 154.3 mAh/g after 100 cycles with a capacity retention of 78.1% at 1 C rate. In comparison, the pure NCA shows a capacity of 194.6 mAh/g at the first cycle and 142.5 mAh/g after 100 cycles with a capacity retention of 73.2% at 1 C rate. Electrochemical impedance spectroscopy(EIS) results show that the coated material exhibits a lower resistance, indicating that the coating layer can efficiently suppress transition metals dissolution and decrease the side reactions at the surface between the electrode and electrolyte. Therefore, surface coating with amorphous Zr(OH)is a simple and useful method to enhance the electrochemical performance of NCA-based materials for the cathode of LIBs. 展开更多
关键词 Ni-rich cathode material Surface modification Dry coating method Zr(OH)4 powders Electrochemical performance
下载PDF
理论设计和实验研究吡啶掺杂聚合氮化碳提升光催化CO_(2)还原性能
4
作者 陈成成 刘芳庭 +3 位作者 张巧钰 张正国 刘琼 方晓明 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2023年第3期91-102,共12页
光催化CO_(2)还原是利用太阳光和水将CO_(2)转化为高价值化学品或燃料(如CO、甲醇、甲烷等),被认为是解决CO_(2)问题的理想途径之一.CO_(2)分子中C=O离解能高而活化困难,且光催化CO_(2)还原涉及多质子耦合多电子转移过程且产物多样,因... 光催化CO_(2)还原是利用太阳光和水将CO_(2)转化为高价值化学品或燃料(如CO、甲醇、甲烷等),被认为是解决CO_(2)问题的理想途径之一.CO_(2)分子中C=O离解能高而活化困难,且光催化CO_(2)还原涉及多质子耦合多电子转移过程且产物多样,因而研制效率高且选择性好的光催化剂是该技术的关键.聚合物氮化碳(PCN)作为一种结构可调的有机光催化剂,具有化学稳定性好且能带位置适宜于还原CO_(2)的优势,是一种具有发展潜力的CO_(2)还原光催化剂;但是PCN也存在因其禁带宽度较大而对可见光响应范围有限以及因其结构由三均三嗪单元构成而缺乏足够活性位点来吸附和活化CO_(2)等不足.目前在提升PCN的光催化CO_(2)还原性能方面已有不少研究,但所得的PCN基光催化剂在效率和选择性上仍处于较低水平.考虑到光催化CO_(2)还原涉及复杂的热力学和动力学要求,对基于PCN的光催化剂进行精准设计和研究是非常必要的,这有望获得同时具有可见光吸收增强、光生载流子复合减少、吸附和活化CO_(2)的位点增加以及能带位置适宜等特性的高性能光催化剂.为此,本论文采用理论设计与实验研究相结合的方法,以吡啶掺杂PCN为模型,研制了一种用于CO_(2)还原的高性能PCN基光催化剂.本文设计了将吡啶掺杂到PCN结构单元中不同位置的两种结构,并运用理论计算确定其中禁带宽度较窄、更利于光生载流子分离、更有助于CO_(2)吸附和活化以及总能量较低的结构作为最优结构.然后,采用尿素与适量的2-氨基吡啶共聚的方法,制备了吡啶掺杂的PCN样品,并通过一系列表征确定结构设计成功.还测定了所得吡啶掺杂PCN样品的光学和光电化学特性,评价了它们光催化CO_(2)还原的活性和选择性.最后,通过理论计算和实验研究,阐明了该吡啶掺杂PCN光催化剂的性能增强机制及其光催化还原CO_(2)的反应路径.结果表明,以CO(bpy)_(2)为助催化剂,本文制备的吡啶掺杂PCN(CN-5%AP)光催化剂不仅取得了较高的CO产量,而且还获得99.6%的CO选择性,在λ=420 nm处的表观量子效率可达2.86%.研究表明,该吡啶掺杂的PCN光催化性能增强主要源于其提升的CO_(2)吸附容量以及对CO_(2)还原为CO反应的促进.综上,本工作为设计和制备实现高效CO_(2)还原的光催化剂提供了参考. 展开更多
关键词 光催化CO_(2)还原 先理论后实验 聚合氮化碳 密度泛函理论 吡啶
下载PDF
Enhanced photocatalytic performance of polymeric C_3N_4 doped with theobromine composed of an imidazole ring and a pyrimidine ring
5
作者 Zehao Li Qian Yang +2 位作者 chengcheng chen Zhengguo Zhang Xiaoming Fang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第6期875-885,共11页
Molecular doping has been proven to be an effective approach to adjusting the electronic structure of polymeric carbon nitride(PCN)and thus improving its optical properties and photocatalytic activity.Herein,theobromi... Molecular doping has been proven to be an effective approach to adjusting the electronic structure of polymeric carbon nitride(PCN)and thus improving its optical properties and photocatalytic activity.Herein,theobromine,a compound composed of an imidazole ring and a pyrimidine ring,was first copolymerized with urea to prepared doped PCN.Experimental investigations and theoretical calculations indicate that,a narrowing in band gap and a positive shift in valence band positon happened to the theobromine doped PCN,owing to the synergistic effect between the pyrimidine ring and the imidazole ring in the theobromine molecule.Moreover,it is shown that the doping with theobromine at a suitable mass fraction makes the obtained sample exhibit decreased photoluminescent emission,enhanced photocurrent density,and reduced charge-transport resistance.Consequently,an enhancement in the photocatalytic activity for water oxidation is found for the sample,which oxygen evolution rate is 4.43 times higher than that of the undoped PCN.This work sheds light on the choice of the molecular dopants for PCN to improve its photocatalytic performance. 展开更多
关键词 Polymeric carbon nitride Molecular doping THEOBROMINE Photocatalytic oxygen evolution Dye degradation
下载PDF
Rapid low-temperature synthesis of perovskite/carbon nanocomposites as superior electrocatalysts for oxygen reduction in Zn-air batteries 被引量:3
6
作者 Zhenhua Yan Hongming Sun +4 位作者 Xiang chen Xiaorui Fu chengcheng chen Fangyi cheng Jun chen 《Nano Research》 SCIE EI CAS CSCD 2018年第6期3282-3293,共12页
The conventional ceramic synthesis of perovskite oxides involves extended high-temperature annealing in air and is unfavorable to the in situ hybridization of the conductive agent, thus resulting in large particle siz... The conventional ceramic synthesis of perovskite oxides involves extended high-temperature annealing in air and is unfavorable to the in situ hybridization of the conductive agent, thus resulting in large particle sizes, low surface area and limited electrochemical activities. Here we report a rapid gel auto-combustion approach for the synthesis of a perovskite/carbon hybrid at a low temperature of 180℃. The energy-saving synthetic strategy allows the formation of small and homogeneously dispersed LaxMnO3±6/C nanocomposites. Remarkably, the synthesized La0.99MnO3.03/C nanocomposite exhibits comparable oxygen reduction reaction (ORR) activity (with onset and peak potentials of 0.97 and 0.88 V, respectively) to the benchmark Pt/C due to the facilitated charge transfer, optimal eg electron filling of Mn, and coupled C-O-Mn bonding. Furthermore, the nanocomposite efficiently catalyzes a Zn-air battery that delivers a peak power density of 430 mW·cm^-2, an energy density of 837 W·h·kgzn^-1 and 340 h stability at a current rate of 10 mA·cm^-2. 展开更多
关键词 perovskite oxide nanocomposite ELECTROCATALYSIS oxygen reduction Zn-air batteries
原文传递
Nanostructured organic electrode materials grown on graphene with covalent-bond interaction for high-rate and ultra-long-life lithium-ion batteries 被引量:2
7
作者 Qing Zhao Jianbin Wang +2 位作者 chengcheng chen Ting Ma Jun chen 《Nano Research》 SCIE EI CAS CSCD 2017年第12期4245-4255,共11页
Nanostructured organic tetralithium salts of 2,5-dihydroxyterephthalic acid (Li4C8H2O6) supported on graphene were prepared via a facile recrystallization method. The optimized composite with 75 wt.% Li4C8H2O6 was e... Nanostructured organic tetralithium salts of 2,5-dihydroxyterephthalic acid (Li4C8H2O6) supported on graphene were prepared via a facile recrystallization method. The optimized composite with 75 wt.% Li4C8H2O6 was evaluated as an anode with redox couples of Li4C8H2O6/Li6C8H2O6 and as a cathode with redox couples of Li4C8H2O6/Li2C8H2O6 for Li-ion batteries, exhibiting a high-rate capability (10 C) and long cycling life (1,000 cycles). Moreover, in an all-organic symmetric Li-ion battery, this dual-function electrode retained capacities of 191 and 121 mA.h·g-1 after 100 and 500 cycles, respectively. Density functional theory calculations indicated the presence of covalent bonds between Li4CsH206 and graphene, which affected both the morphology and electronic structure of the composite. The special nanostructures, high electronic conductivity of graphene, and covalent-bond interaction between Li4C8H2O6 and graphene contributed to the superior electrochemical properties. Our results indicate that the combination of organic salt molecules with graphene is useful for obtaining high-performance organic batteries. 展开更多
关键词 rechargeable Li-ion batteries covalent-bond interaction organic electrode materials GRAPHENE density functional theory(DFT) calculation
原文传递
Improved fluid search optimization-based real-time weed mapping 被引量:2
8
作者 chengcheng chen Shengsheng Wang +2 位作者 Xianchang Wang Helong Yu Ruyi Dong 《Information Processing in Agriculture》 EI 2020年第3期403-417,共15页
In the field of agriculture,variable-rate herbicide spraying(VRHS)technology has been used to solve the low efficiency of pesticides and crop chemical residues.The key of VRHS is the quick and precise identification o... In the field of agriculture,variable-rate herbicide spraying(VRHS)technology has been used to solve the low efficiency of pesticides and crop chemical residues.The key of VRHS is the quick and precise identification of weeds from field images,which forms a weed map.Fluid search optimization(FSO)was able to simplify the threshold optimization process to create a weed map,which simulated the fluid flowing from high pressure to low pressure,but it is time consuming and often converges prematurely.So,an explosion mechanism and a twophase optimization were introduced to improve the FSO-based segmentation algorithm.Experiments of segmentation weeds from a corn field at seedling growth stage showed that the IFSO algorithm obtained the best accuracy of 93.3%and the least running time of 0.019 s,compared with the standard PSO,GA,and FSO algorithms. 展开更多
关键词 Variable-rate herbicide spraying Weed map Fluid search optimization algorithm OTSU
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部