It is challenging to efficiently and economically recycle many lithium-ion batteries(LIBs)because of the low valuation of commodity metals and materials,such as LiFePO_(4).There are millions of tons of spent LIBs wher...It is challenging to efficiently and economically recycle many lithium-ion batteries(LIBs)because of the low valuation of commodity metals and materials,such as LiFePO_(4).There are millions of tons of spent LIBs where the barrier to recycling is economical,and to make recycling more feasible,it is required that the value of the processed recycled material exceeds the value of raw commodity materials.The presented research illustrates improved profitability and economics for recycling spent LIBs by utilizing the surplus energy in lithiated graphite to drive the preparation of organolithiums to add value to the recycled lithium materials.This study methodology demonstrates that the surplus energy of lithiated graphite obtained from spent LIBs can be utilized to prepare high-value organolithiums,thereby significantly improving the economic profitability of LIB recycling.Organolithiums(R-O-Li and R-Li)were prepared using alkyl alcohol(R-OH)and alkyl bromide(R-Br)as substrates,where R includes varying hindered alkyl hydrocarbons.The organolithiums extracted from per kilogram of recycled LIBs can increase the economic value between$29.5 and$226.5 kg^(−1) cell.The value of the organolithiums is at least 5.4 times the total theoretical value of spent materials,improving the profitability of recycling LIBs over traditional pyrometallurgical($0.86 kg^(−1) cell),hydrometallurgical($1.00 kg^(−1) cell),and physical direct recycling methods($5.40 kg^(−1) cell).展开更多
Tartary buckwheat(Fagopyrum tataricum)is a well-known pseudocereal for its health and economic value.However,abundant antinutritional factors(ANFs)reduces its health benefits.As reported,germination can improve the nu...Tartary buckwheat(Fagopyrum tataricum)is a well-known pseudocereal for its health and economic value.However,abundant antinutritional factors(ANFs)reduces its health benefits.As reported,germination can improve the nutritional profile of grains.In this study,we systematically evaluate the safety of Tartary buckwheat seeds(TB)and Tartary buckwheat sprouts(TBS)used as high active ingredients.After evaluating nutrition levels,bioactive compounds and ANFs in TBS during germinating,5^(th)-day TBS were selected as the raw material.C57BL/6J mice were gavaged daily with distilled water,TB,or TBS for 6 weeks.The physiological indices related to ANFs were determined.Results showed that the TB intake tends to generate negative effects on the gut microbiota,and organs.Additionally,upon TB intake,the Fe^(3+)content in serum,trypsin activity in pancreas and jejunum decreased,while the cytokine,IgE,and histamine levels in serum,water content in faeces,cytokine levels in liver and jejunum increased.Conversely,TBS did not induce any obvious negative effects on the above relevant indices and showed better lipid-lowering effect.Altogether,TBS are safer and more effective as a raw material to produce the functional food for long-term consumption with the intention of preventing and treating hyperlipidaemia.展开更多
基金National Natural Science Foundation of China,Grant/Award Number:51232005Key-Area Research and Development Program of Guangdong Province,Grant/Award Number:2020B090919003+1 种基金Joint Fund of the National Natural Science Foundation of China,Grant/Award Number:U1401243Shenzhen Technical Plan Project,Grant/Award Number:CYJ20170412170911187。
文摘It is challenging to efficiently and economically recycle many lithium-ion batteries(LIBs)because of the low valuation of commodity metals and materials,such as LiFePO_(4).There are millions of tons of spent LIBs where the barrier to recycling is economical,and to make recycling more feasible,it is required that the value of the processed recycled material exceeds the value of raw commodity materials.The presented research illustrates improved profitability and economics for recycling spent LIBs by utilizing the surplus energy in lithiated graphite to drive the preparation of organolithiums to add value to the recycled lithium materials.This study methodology demonstrates that the surplus energy of lithiated graphite obtained from spent LIBs can be utilized to prepare high-value organolithiums,thereby significantly improving the economic profitability of LIB recycling.Organolithiums(R-O-Li and R-Li)were prepared using alkyl alcohol(R-OH)and alkyl bromide(R-Br)as substrates,where R includes varying hindered alkyl hydrocarbons.The organolithiums extracted from per kilogram of recycled LIBs can increase the economic value between$29.5 and$226.5 kg^(−1) cell.The value of the organolithiums is at least 5.4 times the total theoretical value of spent materials,improving the profitability of recycling LIBs over traditional pyrometallurgical($0.86 kg^(−1) cell),hydrometallurgical($1.00 kg^(−1) cell),and physical direct recycling methods($5.40 kg^(−1) cell).
基金Supported by the Opening Project of Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural AffairsSichuan Engineering and Technology Research Center of Coarse Cereal Industralization,Chengdu University(2022CC013)。
文摘Tartary buckwheat(Fagopyrum tataricum)is a well-known pseudocereal for its health and economic value.However,abundant antinutritional factors(ANFs)reduces its health benefits.As reported,germination can improve the nutritional profile of grains.In this study,we systematically evaluate the safety of Tartary buckwheat seeds(TB)and Tartary buckwheat sprouts(TBS)used as high active ingredients.After evaluating nutrition levels,bioactive compounds and ANFs in TBS during germinating,5^(th)-day TBS were selected as the raw material.C57BL/6J mice were gavaged daily with distilled water,TB,or TBS for 6 weeks.The physiological indices related to ANFs were determined.Results showed that the TB intake tends to generate negative effects on the gut microbiota,and organs.Additionally,upon TB intake,the Fe^(3+)content in serum,trypsin activity in pancreas and jejunum decreased,while the cytokine,IgE,and histamine levels in serum,water content in faeces,cytokine levels in liver and jejunum increased.Conversely,TBS did not induce any obvious negative effects on the above relevant indices and showed better lipid-lowering effect.Altogether,TBS are safer and more effective as a raw material to produce the functional food for long-term consumption with the intention of preventing and treating hyperlipidaemia.