Soft robot incarnates its unique advantages in deep-sea exploration,but grapples with high hydrostatic pressure’s unpredictable impact on its mechanical performances.In our previous work,a self-powered soft robot sho...Soft robot incarnates its unique advantages in deep-sea exploration,but grapples with high hydrostatic pressure’s unpredictable impact on its mechanical performances.In our previous work,a self-powered soft robot showed excellent work performance in the Mariana Trench at a depth of 11000 m,yet experienced notable degradation in deforming capability.Here,we propose a magnetic loading method for characterizing elastomer’s mechanical properties under extremely high hydrostatic pressure of up to 120 MPa.This method facilitates remote loading and enables in-situ observation,so that the dimensions and deformation at high hydrostatic pressure are obtained and used for calculations.The results reveal that the Young’s modulus of Polydimethylsiloxane(PDMS)monotonously increases with pressure.It is found that the relative increase in Young’s modulus is determined by its initial value,which is 8% for an initial Young’s modulus of 2200 kPa and 38% for 660 kPa.The relation between initial Young’s modulus and relevant increase can be fitted by an exponential function.The bulk modulus of PDMS is about 1.4 GPa at 20℃ and is barely affected by hydrostatic pressure.The method can quantify alterations in the mechanical properties of elastomers induced by hydrostatic pressure,and provide guidance for the design of soft robots which serve in extreme pressure environment.展开更多
Over the last half-century,polyether ether ketone(PEEK)has emerged as a widely adopted thermoplastic polymer,primarily due to its lower density,exceptional mechanical properties,high-temperature and chemical resistanc...Over the last half-century,polyether ether ketone(PEEK)has emerged as a widely adopted thermoplastic polymer,primarily due to its lower density,exceptional mechanical properties,high-temperature and chemical resistance,and biocompatibility.PEEK and its composites have found extensive applications across various fields,including machinery,aerospace,military equipment,electronics,and biomedicine,positioning themselves as promising substitutes for traditional metal structures.Nevertheless,achieving optimal performance and functional molding of PEEK and its composites presents a formidable challenge,given their inherent characteristics,such as semi-crystallinity,high melting temperature,heightened viscosity,low dielectric coefficient,and hydrophobic properties.In this paper,we present a comprehensive review of the molding methods and processes of PEEK and its composites,including extrusion molding,hot compression molding,injection molding,and 3D printing.We also introduce typical innovative applications within the fields of mechanics,electricity,and biomedicine while elucidating methodologies that leverage the distinctive advantages of PEEK and its composites.Additionally,we summarize research findings related to manipulating the properties of PEEK and its composites through the optimization of machine parameters,process variables,and material structural adjustments.Finally,we contemplate the prevailing development trends and outline prospective avenues for further research in the advancement and molding of PEEK and its composites.展开更多
Manufacturing flexible magnetic-driven actuators with complex structures and magnetic arrangements to achieve diverse functionalities is becoming a popular trend.Among various manufacturing technologies,magnetic-assis...Manufacturing flexible magnetic-driven actuators with complex structures and magnetic arrangements to achieve diverse functionalities is becoming a popular trend.Among various manufacturing technologies,magnetic-assisted digital light processing(DLP)stands out because it enables precise manufacturing of macro-scale structures and micro-scale distributions with the assistance of an external magnetic field.Current research on manufacturing magnetic flexible actuators mostly employs single materials,which limits the magnetic driving performance to some extent.Based on these characterizations,we propose a multi-material magnetic field-assisted DLP technology to produce flexible actuators with an accuracy of 200μm.The flexible actuators are printed using two materials with different mechanical and magnetic properties.Considering the interface connectivity of multi-material printing,the effect of interfaces on mechanical properties is also explored.Experimental results indicate good chemical affinity between the two materials we selected.The overlap or connection length of the interface moderately improves the tensile strength of multi-material structures.In addition,we investigate the influence of the volume fraction of the magnetic part on deformation.Simulation and experimental results indicate that increasing the volume ratio(20%to 50%)of the magnetic structure can enhance the responsiveness of the actuator(more than 50%).Finally,we successfully manufacture two multi-material flexible actuators with specific magnetic arrangements:a multi-legged crawling robot and a flexible gripper capable of crawling and grasping actions.These results confirm that this method will pave the way for further research on the precise fabrication of magnetic flexible actuators with diverse functionalities.展开更多
Despite their interesting applications,direct and diverse syntheses of aryl-fused 2-alkyl cyclic amines still remain challenging.Here,the concept of incorporating a C–C coupling process into the N-heteroaryl reductio...Despite their interesting applications,direct and diverse syntheses of aryl-fused 2-alkyl cyclic amines still remain challenging.Here,the concept of incorporating a C–C coupling process into the N-heteroaryl reduction was successfully applied to fulfill such a synthetic purpose.Due to our use of controllable electroreduction coupled with proton abstraction,we can report a room-temperature reductiveα-alkylation of the inert N-heteroarenes with abundantly available styrenes in an undivided Zn(+)/C(−)cell.This proceeds with good substrate compatibility and operational simplicity,utilizes cost-effective sacrificial Zn-anode,exhibits high selectivity,and does not need pressurized H2 gas and transition-metal catalysts.This current work offers a useful platform for direct construction of valuable aryl-fused 2-alkyl cyclic amines that are difficult to access with conventional methods.展开更多
The present study aimed to formulate triptorelin acetate(TA)into poly(D,L-lactic-co-glycolic)acid(PLGA)based injectable sustained-release microspheres(TA-PLGA-MS)by usingdouble emulsion solvent extraction/evaporation(...The present study aimed to formulate triptorelin acetate(TA)into poly(D,L-lactic-co-glycolic)acid(PLGA)based injectable sustained-release microspheres(TA-PLGA-MS)by usingdouble emulsion solvent extraction/evaporation(DESE)technique and investigate the effects of various material attributes and process parameters on the quality attributes such as size,shape,surface morphology,encapsulation efficiency(EE)and in vitro release behavior of these microspheres.Variable compositions of the outer water phase,type of the organic solvents,volume ratios of inner water phase to oil phase,PLGA concentrations,and the powers for emulsification in the preparation of the microspheres showed an influence on their quality attributes.An optimal formulation(F-2)obtained from this univariate approach possess an excellent EE value of 63.5%±3.4%and an average volumetric particle size of 35.3±1.8μm.This formulation was further accomplished with different solidification rates assisted by variable incubation temperatures,which exhibited an impact on the shape/surface and inner morphology of the microspheres.The resultant microspheres also displayed different in vitro release patterns.The matrices processed with a high incubation temperature conferred the fastest and the most complete drug release profile over the period of 63 days.Thus,the solidification rate could be identified as one of the critical process parameters that affected the quality of the PLGA based injectable microspheres specifically designed for the prolonged delivery of TA.展开更多
基金supported in part by the National Natural Science Foundation of China(52205424)in part by National Natural Science Foundation of China(T2125009,92048302)+2 种基金in part by Laoshan laboratory(Grant No.LSKJ202205300)in part by‘Pioneer’R&D Program of Zhejiang(Grant No.2023C03007)in part by the Zhejiang Provincial Natural Science Foundation of China(LY23A020001).
文摘Soft robot incarnates its unique advantages in deep-sea exploration,but grapples with high hydrostatic pressure’s unpredictable impact on its mechanical performances.In our previous work,a self-powered soft robot showed excellent work performance in the Mariana Trench at a depth of 11000 m,yet experienced notable degradation in deforming capability.Here,we propose a magnetic loading method for characterizing elastomer’s mechanical properties under extremely high hydrostatic pressure of up to 120 MPa.This method facilitates remote loading and enables in-situ observation,so that the dimensions and deformation at high hydrostatic pressure are obtained and used for calculations.The results reveal that the Young’s modulus of Polydimethylsiloxane(PDMS)monotonously increases with pressure.It is found that the relative increase in Young’s modulus is determined by its initial value,which is 8% for an initial Young’s modulus of 2200 kPa and 38% for 660 kPa.The relation between initial Young’s modulus and relevant increase can be fitted by an exponential function.The bulk modulus of PDMS is about 1.4 GPa at 20℃ and is barely affected by hydrostatic pressure.The method can quantify alterations in the mechanical properties of elastomers induced by hydrostatic pressure,and provide guidance for the design of soft robots which serve in extreme pressure environment.
基金supported by the National Key R&D Program of China(No.2022YFC2401903)the“Pioneer”and the“Leading Goose”R&D Program of Zhejiang Province(No.2023C01170)+1 种基金the National Natural Science Foundation of China(No.52205424)the Key Project of Science and Technology Innovation 2025 of Ningbo(No.2023Z029),China.
文摘Over the last half-century,polyether ether ketone(PEEK)has emerged as a widely adopted thermoplastic polymer,primarily due to its lower density,exceptional mechanical properties,high-temperature and chemical resistance,and biocompatibility.PEEK and its composites have found extensive applications across various fields,including machinery,aerospace,military equipment,electronics,and biomedicine,positioning themselves as promising substitutes for traditional metal structures.Nevertheless,achieving optimal performance and functional molding of PEEK and its composites presents a formidable challenge,given their inherent characteristics,such as semi-crystallinity,high melting temperature,heightened viscosity,low dielectric coefficient,and hydrophobic properties.In this paper,we present a comprehensive review of the molding methods and processes of PEEK and its composites,including extrusion molding,hot compression molding,injection molding,and 3D printing.We also introduce typical innovative applications within the fields of mechanics,electricity,and biomedicine while elucidating methodologies that leverage the distinctive advantages of PEEK and its composites.Additionally,we summarize research findings related to manipulating the properties of PEEK and its composites through the optimization of machine parameters,process variables,and material structural adjustments.Finally,we contemplate the prevailing development trends and outline prospective avenues for further research in the advancement and molding of PEEK and its composites.
基金support from the National Natural Science Foundation of China(Grant No.52205424)the Natural Science Foundation of Zhejiang Province for Distinguished Young Scholars of China(Grant No.LR22E050002)+1 种基金the“Pioneer”and“Leading Goose”R&D Program of Zhejiang Province of China(Grant No.2023C01170)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LY23A020001).
文摘Manufacturing flexible magnetic-driven actuators with complex structures and magnetic arrangements to achieve diverse functionalities is becoming a popular trend.Among various manufacturing technologies,magnetic-assisted digital light processing(DLP)stands out because it enables precise manufacturing of macro-scale structures and micro-scale distributions with the assistance of an external magnetic field.Current research on manufacturing magnetic flexible actuators mostly employs single materials,which limits the magnetic driving performance to some extent.Based on these characterizations,we propose a multi-material magnetic field-assisted DLP technology to produce flexible actuators with an accuracy of 200μm.The flexible actuators are printed using two materials with different mechanical and magnetic properties.Considering the interface connectivity of multi-material printing,the effect of interfaces on mechanical properties is also explored.Experimental results indicate good chemical affinity between the two materials we selected.The overlap or connection length of the interface moderately improves the tensile strength of multi-material structures.In addition,we investigate the influence of the volume fraction of the magnetic part on deformation.Simulation and experimental results indicate that increasing the volume ratio(20%to 50%)of the magnetic structure can enhance the responsiveness of the actuator(more than 50%).Finally,we successfully manufacture two multi-material flexible actuators with specific magnetic arrangements:a multi-legged crawling robot and a flexible gripper capable of crawling and grasping actions.These results confirm that this method will pave the way for further research on the precise fabrication of magnetic flexible actuators with diverse functionalities.
基金support of the National Natural Science Foundation of China(grant no.21971071)the Natural Science Foundation of Guangdong Province(grant no.2021A1515010155).
文摘Despite their interesting applications,direct and diverse syntheses of aryl-fused 2-alkyl cyclic amines still remain challenging.Here,the concept of incorporating a C–C coupling process into the N-heteroaryl reduction was successfully applied to fulfill such a synthetic purpose.Due to our use of controllable electroreduction coupled with proton abstraction,we can report a room-temperature reductiveα-alkylation of the inert N-heteroarenes with abundantly available styrenes in an undivided Zn(+)/C(−)cell.This proceeds with good substrate compatibility and operational simplicity,utilizes cost-effective sacrificial Zn-anode,exhibits high selectivity,and does not need pressurized H2 gas and transition-metal catalysts.This current work offers a useful platform for direct construction of valuable aryl-fused 2-alkyl cyclic amines that are difficult to access with conventional methods.
基金the Natural Science Foundation of Liaoning province of China-Guidance Plan(No.2019-ZD-0448)Liaoning Province Pan Deng Xue Zhe Grant(M.Yang)for the financial support。
文摘The present study aimed to formulate triptorelin acetate(TA)into poly(D,L-lactic-co-glycolic)acid(PLGA)based injectable sustained-release microspheres(TA-PLGA-MS)by usingdouble emulsion solvent extraction/evaporation(DESE)technique and investigate the effects of various material attributes and process parameters on the quality attributes such as size,shape,surface morphology,encapsulation efficiency(EE)and in vitro release behavior of these microspheres.Variable compositions of the outer water phase,type of the organic solvents,volume ratios of inner water phase to oil phase,PLGA concentrations,and the powers for emulsification in the preparation of the microspheres showed an influence on their quality attributes.An optimal formulation(F-2)obtained from this univariate approach possess an excellent EE value of 63.5%±3.4%and an average volumetric particle size of 35.3±1.8μm.This formulation was further accomplished with different solidification rates assisted by variable incubation temperatures,which exhibited an impact on the shape/surface and inner morphology of the microspheres.The resultant microspheres also displayed different in vitro release patterns.The matrices processed with a high incubation temperature conferred the fastest and the most complete drug release profile over the period of 63 days.Thus,the solidification rate could be identified as one of the critical process parameters that affected the quality of the PLGA based injectable microspheres specifically designed for the prolonged delivery of TA.