In this paper,the channel impulse response matrix(CIRM)can be expressed as a sum of couplings between the steering vectors at the base station(BS)and the eigenbases at the mobile station(MS).Nakagami distribution was ...In this paper,the channel impulse response matrix(CIRM)can be expressed as a sum of couplings between the steering vectors at the base station(BS)and the eigenbases at the mobile station(MS).Nakagami distribution was used to describe the fading of the coupling between the steering vectors and the eigenbases.Extensive measurements were carried out to evaluate the performance of this proposed model.Furthermore,the physical implications of this model were illustrated and the capacities are analyzed.In addition,the azimuthal power spectrum(APS)of several models was analyzed.Finally,the channel hardening effect was simulated and discussed.Results showed that the proposed model provides a better fit to the measured results than the other CBSM,i.e.,Weichselberger model.Moreover,the proposed model can provide better tradeoff between accuracy and complexity in channel synthesis.This CIRM model can be used for massive MIMO design in the future communication system design.展开更多
Magnetic bubbles have again become a subject of significant attention following the experimental observation of topologically nontrivial magnetic skyrmions. In recent work, tailoring the shape of the bubbles is consid...Magnetic bubbles have again become a subject of significant attention following the experimental observation of topologically nontrivial magnetic skyrmions. In recent work, tailoring the shape of the bubbles is considered a key factor for their dynamics in spintronic devices. In addition to the reported circular, elliptical, and square bubbles, here we observe triangular bubble domains in bismuth-doped yttrium iron garnet(Bi-YIG) using Kerr microscopy. The bubble domains evolve from discrete circular to latticed triangular and hexagonal shapes. Further, the orientation of the triangular bubbles in the hexagonal lattices can be flipped by decreasing the magnetic field. The sixfold in-plane magnetic anisotropy of Bi-YIG(111) crystal, which is presumably the mechanism underlying the triangular shape of the bubbles, is measured as1179 erg/cm~3. The study of the morphologies of topologically trivial bubbles in YIG offers insight into nontrivial spin textures, which is appealing for future spintronic applications.展开更多
In order to support massive Machine Type Communication(mMTC) applications in future Fifth Generation(5G) systems,a key technical challenge is to design a highly effective multiple access protocol for massive connectio...In order to support massive Machine Type Communication(mMTC) applications in future Fifth Generation(5G) systems,a key technical challenge is to design a highly effective multiple access protocol for massive connection requests and huge traffic load from all kinds of smart devices,e.g.bike,watch,phone,ring,glasses,shoes,etc..To solve this hard problem in distributed scenarios with massive competing devices,this paper proposes and evaluates a Neighbor-Aware Multiple Access(NAMA) protocol,which is scalable and adaptive to different connectivity size and traffic load.By exploiting acknowledgement signals broadcasted from the neighboring devices with successful packet transmissions,NAMA is able to turn itself from a contention-based random access protocol to become a contention-free deterministic access protocol with particular transmission schedules for all neighboring devices after a short transition period.The performance of NAMA is fully evaluated from random state to deterministic state through extensive computer simulations under different network sizes and Contention Window(CW)settings.Compared with traditional IEEE802.11 Distributed Coordination Function(DCF),for a crowded network with 50 devices,NAMA can greatly improve system throughput and energy efficiency by more than 110%and210%,respectively,while reducing average access delay by 53%in the deterministic state.展开更多
The high-speed railway and high-way networks are now expanding at a phenomenal speed in Chinaand in many other parts of the world. The related broadband wireless communication over high-speed trains and highway vehicl...The high-speed railway and high-way networks are now expanding at a phenomenal speed in Chinaand in many other parts of the world. The related broadband wireless communication over high-speed trains and highway vehicles is a very challenging task due to hostile transmission channel conditions. The demand for such services is growing rapidly, following the proliferation of laptop/tablet computers and smart phones. This motivates the research on wireless communications in the high mobility environments.展开更多
As an important part of sixth generation(6G)integrated space-air-ground-sea networks,unmanned aerial vehicle(UAV)communications have aroused great attention and one of its typical application scenarios is the hilly en...As an important part of sixth generation(6G)integrated space-air-ground-sea networks,unmanned aerial vehicle(UAV)communications have aroused great attention and one of its typical application scenarios is the hilly environments.The related UAV air-ground(AG)channel characteristics analysis is crucial for system design and network evaluation of future UAV communications in hilly scenarios.In this paper,a recently conducted channel measurements campaign in a hilly scenario is presented,which is conducted at the center frequencies of 2.585 GHz and 3.5 GHz for different flight trajectories.Based on the measurement data,some key channel characteristics are analyzed,including path loss(PL),shadow fading(SF),Rician K-factor,root mean square(RMS)delay spread(DS),and temporal auto-correlation function(ACF).Finally,the comparison of typical channel characteristics under circular and straight trajectories is given.The related results can provide a theoretical reference for constructing future UAV communication system in hilly scenarios.展开更多
In the early stage of 6G research,carrying out research on channel measurements and models is one of the fundamental and prerequisite works,as well as full of the challenges.Driven by the demand for multiple frequency...In the early stage of 6G research,carrying out research on channel measurements and models is one of the fundamental and prerequisite works,as well as full of the challenges.Driven by the demand for multiple frequency bands,versatile scenarios,and various new technologies in the future,6G channels are expanding in multiple dimensions such as the space-time-frequency domains.Those all make 6G channel measurement and modeling research face a series of new challenges,e.g.,non-stationarity in multiple dimensions,the obvious increase in modeling complexity,and changes in theoretical premises and assumptions.It is therefore clear that more efforts are needed to understand propagation characteristics,especially in the new scenes and applications,and to develop a new paradigm for 6G channel modeling.展开更多
The effects of 14 factors on food production in Huang-Huai-Hai Plain are analyzed by path analysis in this paper,and then the linear regression models of them are established by SPSS software. The results show that el...The effects of 14 factors on food production in Huang-Huai-Hai Plain are analyzed by path analysis in this paper,and then the linear regression models of them are established by SPSS software. The results show that electricity consumption for agriculture,growing area of crops,the affected area,annual average temperature and arable land area at the end of the year have great effects on food production. Finally some recommendations are put forward to improve the food production in Huang-Huai-Hai Plain such as improving the level of agricultural mechanization,stabilizing food production,preventing natural disasters and increasing the effective irrigation area.展开更多
Lithium-oxygen batteries(LOBs)have extensive applications because of their ultra-high energy densities.However,the practical application of LOBs is limited by several factors,such as a high overpotential,poor cycle st...Lithium-oxygen batteries(LOBs)have extensive applications because of their ultra-high energy densities.However,the practical application of LOBs is limited by several factors,such as a high overpotential,poor cycle stability,and limited rate capacity.In this paper,we describe the successful uniform loading of Mn_(3)O_(4) nanoparticles onto multi-walled carbon nanotubes(Mn_(3)O_(4)@CNT).CNTs form a conductive network and expose numerous catalytically active sites,and the one-dimensional porous structure provides a convenient channel for the transmission of Li+and O2 in LOBs.The electronic conductivity and electrocatalytic activity of Mn_(3)O_(4)@CNT are significantly better than those of MnO@CNT because of the inherent driving force facilitating charge transfer between different valence metal ions.Therefore,the Mn_(3)O_(4)@CNT cathode obtains a low overpotential(0.76 V at a limited capacity of 1000 mAh g^(-1)),high initial discharge capacity(16895 mAh g^(-1) at 200 mA g^(-1)),and long cycle life(97 cycles at 200 mA g^(-1)).This study provides evidence that transition metal oxides with mixed-valence states are suitable for application as efficient cathodes for LOBs.展开更多
Silicon(Si)anodes with extremely high theoretical capacities are considered indispensable for next-generation high-energy lithium-ion batteries(LIBs).However,several intractable problems,including pulverization,poor e...Silicon(Si)anodes with extremely high theoretical capacities are considered indispensable for next-generation high-energy lithium-ion batteries(LIBs).However,several intractable problems,including pulverization,poor electrical contact,and continuous side reactions caused by the large volume change of Si during lithia-tion/delithiation,lead to a short cycle life and poor rate capability,thus hindering the commercial use of Si anodes in LIBs.Two-dimensional(2D)Si with a unique graphene-like structure has a short ion diffusion path-way,small volume change during lithiation,and efficient redox site utilization,making it more promising than bulk Si or Si with other versatile structures for use in LIBs.Theoretical analysis demonstrated that the low energy barrier on the surface of 2D Si accelerates the transport of Li+.However,the issues surrounding 2D Si,includ-ing the tedious and user-unfriendly synthesis,ease of restacking,and atmospheric sensitivity,limit its practical applications,which are discussed in this review.Furthermore,possible solutions to these remaining challenges and new directions are provided,with the aim of designing practical and high-performance 2D Si anodes for next-generation LIBs.展开更多
Selenium,an element belonging to the same group in the periodic table as sulfur,has a high electronic conductivity(1×10^(-5)S/cm)and a high volumetric energy density(3253 mA h/cm^(3)),which is a prospective catho...Selenium,an element belonging to the same group in the periodic table as sulfur,has a high electronic conductivity(1×10^(-5)S/cm)and a high volumetric energy density(3253 mA h/cm^(3)),which is a prospective cathode material for high-energy all-solid-state rechargeable batteries.However,its wide use is hindered by large volume expansion and low utilization rate.In this work,Se-infused nitrogen-doped hierarchical meso-microporous carbon composites(Se/NHPC)are prepared by a melt-diffusion process.Amorphous Se is uniformly dispersed in meso-micropores of NHPC with a high mass loading of 81%.All-solid-state Li-Se batteries fabricated by using Se/NHPC as the cathode,a Li-In alloy as the anode,and Li_(6)PS_(5)Cl as the solid-state electrolyte,deliver a highly reversible capacity of 621 m Ah/g(92%of theoretical capacity),a good rate capability and a high capacity retention value of 80.9%after 100 cycles.It is found that the capacity decay of Se cathode is mainly related to the interfacial degradation and the separation of Se from the carbon substrate,as suggested by the continuous increase of interfacial resistance and the structural transformation from amorphous Senchains to Se8rings initial discharge/charge cycle and then to the trigonally crystalline Se chains structure after the long-term cycles.展开更多
The risk of flammability is an unavoidable issue for gel polymer electrolytes(GPEs).Usually,flameretardant solvents are necessary to be used,but most of them would react with anode/cathode easily and cause serious int...The risk of flammability is an unavoidable issue for gel polymer electrolytes(GPEs).Usually,flameretardant solvents are necessary to be used,but most of them would react with anode/cathode easily and cause serious interfacial instability,which is a big challenge for design and application of nonflammable GPEs.Here,a nonflammable GPE(SGPE)is developed by in situ polymerizing trifluoroethyl methacrylate(TFMA)monomers with flame-retardant triethyl phosphate(TEP)solvents and LiTFSI–LiDFOB dual lithium salts.TEP is strongly anchored to PTFMA matrix via polarity interaction between-P=O and-CH_(2)CF_(3).It reduces free TEP molecules,which obviously mitigates interfacial reactions,and enhances flame-retardant performance of TEP surprisingly.Anchored TEP molecules are also inhibited in solvation of Li^(+),leading to anion-dominated solvation sheath,which creates inorganic-rich solid electrolyte interface/cathode electrolyte interface layers.Such coordination structure changes Li^(+)transport from sluggish vehicular to fast structural transport,raising ionic conductivity to 1.03 mS cm^(-1) and transfer number to 0.41 at 30℃.The Li|SGPE|Li cell presents highly reversible Li stripping/plating performance for over 1000 h at 0.1 mA cm^(−2),and 4.2 V LiCoO_(2)|SGPE|Li battery delivers high average specific capacity>120 mAh g^(−1) over 200 cycles.This study paves a new way to make nonflammable GPE that is compatible with Li metal anode.展开更多
Developing highly conductive,stable,and active hydrogen evolution reaction(HER)catalysts is a critical step towards establishing the hydrogen economy.However,there are few catalysts,except for noble metals,that can me...Developing highly conductive,stable,and active hydrogen evolution reaction(HER)catalysts is a critical step towards establishing the hydrogen economy.However,there are few catalysts,except for noble metals,that can meet all the requirements.Recently,two-dimensional(2D)transition metal carbon/nitride(MXene)materials have shown excellent performance in catalysis,and have attracted wide attention from researchers.In this study,the effectiveness of non-metal element(B,C,N,P,and S)-doped Ti_(3)C_(2)O_(2)MXene in the electrocatalytic hydrogen evolution reaction was investigated using density functional theory(DFT)calculations.Non-metal atoms as elec-tron donors can provide additional electrons to the O functional group on the catalyst surface,thereby reducing charge transfer from H to O and the interaction between H and O.The Gibbs free energy(ΔG H)of non-metal element-doped Ti_(3)C_(2)O_(2)is closer to 0 than that of pristine Ti_(3)C_(2)O_(2),demonstrating better hydrogen evolution performance.Furthermore,in the hydrogen evolution path,the desorption process is more inclined to the Hey-rovsky mechanism,and doping greatly reduces the energy barrier of the reaction,thereby improving the catalytic efficiency.The present results prove that doping with non-metallic elements is an effective means of improving the catalytic activity of Ti_(3)C_(2)O_(2)for hydrogen evolution.展开更多
基金supported by the Key R&D Project of Jiangsu Province(Modern Agriculture)under Grant BE2022322 the"Pilot Plan"Internet of Things special project(China Institute of Io T(wuxi)and Wuxi Internet of Things Innovation Promotion Center)under Grant 2022SP-T16-Bin part by the 111 Project under Grant B12018+2 种基金in part by the Six talent peaks project in Jiangsu Provincein part by the open foundation of Key Laboratory of Wireless Sensor Network and Communication,Shanghai Institute of Microsystem and Information Technology,Chinese Academy of Sciences under Grant 20190917in part by the open research fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology(Nanjing University of Posts and Telecommunications,Ministry of Education)。
文摘In this paper,the channel impulse response matrix(CIRM)can be expressed as a sum of couplings between the steering vectors at the base station(BS)and the eigenbases at the mobile station(MS).Nakagami distribution was used to describe the fading of the coupling between the steering vectors and the eigenbases.Extensive measurements were carried out to evaluate the performance of this proposed model.Furthermore,the physical implications of this model were illustrated and the capacities are analyzed.In addition,the azimuthal power spectrum(APS)of several models was analyzed.Finally,the channel hardening effect was simulated and discussed.Results showed that the proposed model provides a better fit to the measured results than the other CBSM,i.e.,Weichselberger model.Moreover,the proposed model can provide better tradeoff between accuracy and complexity in channel synthesis.This CIRM model can be used for massive MIMO design in the future communication system design.
基金support by the National Natural Science Foundation of China (Grant Nos. 52061135105 and 12074025)support by the National Natural Science Foundation of China (Grant Nos. 11974079, 12274083, and 12221004)the Shanghai Municipal Science and Technology Basic Research Project (Grant No. 22JC1400200)。
文摘Magnetic bubbles have again become a subject of significant attention following the experimental observation of topologically nontrivial magnetic skyrmions. In recent work, tailoring the shape of the bubbles is considered a key factor for their dynamics in spintronic devices. In addition to the reported circular, elliptical, and square bubbles, here we observe triangular bubble domains in bismuth-doped yttrium iron garnet(Bi-YIG) using Kerr microscopy. The bubble domains evolve from discrete circular to latticed triangular and hexagonal shapes. Further, the orientation of the triangular bubbles in the hexagonal lattices can be flipped by decreasing the magnetic field. The sixfold in-plane magnetic anisotropy of Bi-YIG(111) crystal, which is presumably the mechanism underlying the triangular shape of the bubbles, is measured as1179 erg/cm~3. The study of the morphologies of topologically trivial bubbles in YIG offers insight into nontrivial spin textures, which is appealing for future spintronic applications.
基金funded by the National Natural Science Foundation of China (Grant No.61231009)the National HighTech R&D Program of China(863)(Grant No.2014AA01A701)+5 种基金the National Science and Technology Major Project(Grant No. 2015ZX03001033-003)Ministry of Science and Technology International Cooperation Project(Grant No.2014DFE10160)the Science and Technology Commission of Shanghai Municipality(Grant No.14ZR1439600)the EU H2020 5G Wireless project(Grant No.641985)the EU FP7 QUICK project(Grant No. PIRSES-GA-2013-612652)the EPSRC TOUCAN project(Grant No.EP/L020009/1)
文摘In order to support massive Machine Type Communication(mMTC) applications in future Fifth Generation(5G) systems,a key technical challenge is to design a highly effective multiple access protocol for massive connection requests and huge traffic load from all kinds of smart devices,e.g.bike,watch,phone,ring,glasses,shoes,etc..To solve this hard problem in distributed scenarios with massive competing devices,this paper proposes and evaluates a Neighbor-Aware Multiple Access(NAMA) protocol,which is scalable and adaptive to different connectivity size and traffic load.By exploiting acknowledgement signals broadcasted from the neighboring devices with successful packet transmissions,NAMA is able to turn itself from a contention-based random access protocol to become a contention-free deterministic access protocol with particular transmission schedules for all neighboring devices after a short transition period.The performance of NAMA is fully evaluated from random state to deterministic state through extensive computer simulations under different network sizes and Contention Window(CW)settings.Compared with traditional IEEE802.11 Distributed Coordination Function(DCF),for a crowded network with 50 devices,NAMA can greatly improve system throughput and energy efficiency by more than 110%and210%,respectively,while reducing average access delay by 53%in the deterministic state.
基金supported by the Major State Basic Research Development Program of China(973 Program No.2012CB316100)the National Natural Science Foundation of China(NSFC No.61032002)the Innovative Intelligence Base Project(111 Project No.111-2-14)
文摘The high-speed railway and high-way networks are now expanding at a phenomenal speed in Chinaand in many other parts of the world. The related broadband wireless communication over high-speed trains and highway vehicles is a very challenging task due to hostile transmission channel conditions. The demand for such services is growing rapidly, following the proliferation of laptop/tablet computers and smart phones. This motivates the research on wireless communications in the high mobility environments.
基金supported by the National Key R&D Program of China under Grant 2021YFB1407001the National Natural Science Foundation of China(NSFC)under Grants 62001269 and 61960206006+5 种基金the Fundamental Research Funds of Shandong University under Grant 2020GN032the Future Plan Program for Young Scholars of Shandong Universitythe State Key Laboratory of Rail Traffic Control and Safety(Contract No.RCS2022K009)Beijing Jiaotong University,the Taishan Scholar Program of Shandong Province,the Key Technologies R&D Program of Jiangsu(Prospective and Key Technologies for Industry)under Grants BE2022067,BE2022067-1,and BE2022067-3the High Level Innovation and Entrepreneurial Talent Introduction Program in Jiangsuthe EU H2020 RISE TESTBED2 project under Grant 872172.
文摘As an important part of sixth generation(6G)integrated space-air-ground-sea networks,unmanned aerial vehicle(UAV)communications have aroused great attention and one of its typical application scenarios is the hilly environments.The related UAV air-ground(AG)channel characteristics analysis is crucial for system design and network evaluation of future UAV communications in hilly scenarios.In this paper,a recently conducted channel measurements campaign in a hilly scenario is presented,which is conducted at the center frequencies of 2.585 GHz and 3.5 GHz for different flight trajectories.Based on the measurement data,some key channel characteristics are analyzed,including path loss(PL),shadow fading(SF),Rician K-factor,root mean square(RMS)delay spread(DS),and temporal auto-correlation function(ACF).Finally,the comparison of typical channel characteristics under circular and straight trajectories is given.The related results can provide a theoretical reference for constructing future UAV communication system in hilly scenarios.
文摘In the early stage of 6G research,carrying out research on channel measurements and models is one of the fundamental and prerequisite works,as well as full of the challenges.Driven by the demand for multiple frequency bands,versatile scenarios,and various new technologies in the future,6G channels are expanding in multiple dimensions such as the space-time-frequency domains.Those all make 6G channel measurement and modeling research face a series of new challenges,e.g.,non-stationarity in multiple dimensions,the obvious increase in modeling complexity,and changes in theoretical premises and assumptions.It is therefore clear that more efforts are needed to understand propagation characteristics,especially in the new scenes and applications,and to develop a new paradigm for 6G channel modeling.
基金Supported by Soft Science Project of Shandong Province(2009RKB01052)
文摘The effects of 14 factors on food production in Huang-Huai-Hai Plain are analyzed by path analysis in this paper,and then the linear regression models of them are established by SPSS software. The results show that electricity consumption for agriculture,growing area of crops,the affected area,annual average temperature and arable land area at the end of the year have great effects on food production. Finally some recommendations are put forward to improve the food production in Huang-Huai-Hai Plain such as improving the level of agricultural mechanization,stabilizing food production,preventing natural disasters and increasing the effective irrigation area.
基金the Nature Science Foun-dation of Shandong Province(Grant No:ZR2019BEM019)Future Plans of Young Scholars at Shandong University.
文摘Lithium-oxygen batteries(LOBs)have extensive applications because of their ultra-high energy densities.However,the practical application of LOBs is limited by several factors,such as a high overpotential,poor cycle stability,and limited rate capacity.In this paper,we describe the successful uniform loading of Mn_(3)O_(4) nanoparticles onto multi-walled carbon nanotubes(Mn_(3)O_(4)@CNT).CNTs form a conductive network and expose numerous catalytically active sites,and the one-dimensional porous structure provides a convenient channel for the transmission of Li+and O2 in LOBs.The electronic conductivity and electrocatalytic activity of Mn_(3)O_(4)@CNT are significantly better than those of MnO@CNT because of the inherent driving force facilitating charge transfer between different valence metal ions.Therefore,the Mn_(3)O_(4)@CNT cathode obtains a low overpotential(0.76 V at a limited capacity of 1000 mAh g^(-1)),high initial discharge capacity(16895 mAh g^(-1) at 200 mA g^(-1)),and long cycle life(97 cycles at 200 mA g^(-1)).This study provides evidence that transition metal oxides with mixed-valence states are suitable for application as efficient cathodes for LOBs.
基金National Natural Science Foundation of China(No.51902188)Natural Science Foundation of Jiangsu Province(No.BK20190207)+1 种基金Natural Science Doctoral Foundation of Shandong Province(No.ZR2019BEM019)the Future Program for Young Scholar of Shandong University.
文摘Silicon(Si)anodes with extremely high theoretical capacities are considered indispensable for next-generation high-energy lithium-ion batteries(LIBs).However,several intractable problems,including pulverization,poor electrical contact,and continuous side reactions caused by the large volume change of Si during lithia-tion/delithiation,lead to a short cycle life and poor rate capability,thus hindering the commercial use of Si anodes in LIBs.Two-dimensional(2D)Si with a unique graphene-like structure has a short ion diffusion path-way,small volume change during lithiation,and efficient redox site utilization,making it more promising than bulk Si or Si with other versatile structures for use in LIBs.Theoretical analysis demonstrated that the low energy barrier on the surface of 2D Si accelerates the transport of Li+.However,the issues surrounding 2D Si,includ-ing the tedious and user-unfriendly synthesis,ease of restacking,and atmospheric sensitivity,limit its practical applications,which are discussed in this review.Furthermore,possible solutions to these remaining challenges and new directions are provided,with the aim of designing practical and high-performance 2D Si anodes for next-generation LIBs.
基金supported by the National Natural Science Foundation of China(Nos.51902188,52272224)Innovation Capacity Improvement Project of Small and Medium-Sized Technology-Based Enterprise of Shandong Province(No.2021TSGC1149)+2 种基金Youth Innovation Team Project of Shandong Provincial Education Department(No.10000082295015)Natural Science Doctoral Foundation of Shandong Province(No.ZR2019BEM019)the Future Program for Young Scholar of Shandong University。
文摘Selenium,an element belonging to the same group in the periodic table as sulfur,has a high electronic conductivity(1×10^(-5)S/cm)and a high volumetric energy density(3253 mA h/cm^(3)),which is a prospective cathode material for high-energy all-solid-state rechargeable batteries.However,its wide use is hindered by large volume expansion and low utilization rate.In this work,Se-infused nitrogen-doped hierarchical meso-microporous carbon composites(Se/NHPC)are prepared by a melt-diffusion process.Amorphous Se is uniformly dispersed in meso-micropores of NHPC with a high mass loading of 81%.All-solid-state Li-Se batteries fabricated by using Se/NHPC as the cathode,a Li-In alloy as the anode,and Li_(6)PS_(5)Cl as the solid-state electrolyte,deliver a highly reversible capacity of 621 m Ah/g(92%of theoretical capacity),a good rate capability and a high capacity retention value of 80.9%after 100 cycles.It is found that the capacity decay of Se cathode is mainly related to the interfacial degradation and the separation of Se from the carbon substrate,as suggested by the continuous increase of interfacial resistance and the structural transformation from amorphous Senchains to Se8rings initial discharge/charge cycle and then to the trigonally crystalline Se chains structure after the long-term cycles.
基金supported by the National Natural Science Foundation of China(Nos.52172214,52272221,52171182)the Postdoctoral Innovation Project of Shandong Province(No.202102003)+2 种基金The Key Research and Development Program of Shandong Province(2021ZLGX01)the Qilu Young Scholar ProgramHPC Cloud Platform of Shandong University are also thanked.
文摘The risk of flammability is an unavoidable issue for gel polymer electrolytes(GPEs).Usually,flameretardant solvents are necessary to be used,but most of them would react with anode/cathode easily and cause serious interfacial instability,which is a big challenge for design and application of nonflammable GPEs.Here,a nonflammable GPE(SGPE)is developed by in situ polymerizing trifluoroethyl methacrylate(TFMA)monomers with flame-retardant triethyl phosphate(TEP)solvents and LiTFSI–LiDFOB dual lithium salts.TEP is strongly anchored to PTFMA matrix via polarity interaction between-P=O and-CH_(2)CF_(3).It reduces free TEP molecules,which obviously mitigates interfacial reactions,and enhances flame-retardant performance of TEP surprisingly.Anchored TEP molecules are also inhibited in solvation of Li^(+),leading to anion-dominated solvation sheath,which creates inorganic-rich solid electrolyte interface/cathode electrolyte interface layers.Such coordination structure changes Li^(+)transport from sluggish vehicular to fast structural transport,raising ionic conductivity to 1.03 mS cm^(-1) and transfer number to 0.41 at 30℃.The Li|SGPE|Li cell presents highly reversible Li stripping/plating performance for over 1000 h at 0.1 mA cm^(−2),and 4.2 V LiCoO_(2)|SGPE|Li battery delivers high average specific capacity>120 mAh g^(−1) over 200 cycles.This study paves a new way to make nonflammable GPE that is compatible with Li metal anode.
基金support from the Nature Science Founda-tion of Shandong Province(Grant No:ZR2019BEM019)and the Future Plans of Young Scholars at Shandong University.
文摘Developing highly conductive,stable,and active hydrogen evolution reaction(HER)catalysts is a critical step towards establishing the hydrogen economy.However,there are few catalysts,except for noble metals,that can meet all the requirements.Recently,two-dimensional(2D)transition metal carbon/nitride(MXene)materials have shown excellent performance in catalysis,and have attracted wide attention from researchers.In this study,the effectiveness of non-metal element(B,C,N,P,and S)-doped Ti_(3)C_(2)O_(2)MXene in the electrocatalytic hydrogen evolution reaction was investigated using density functional theory(DFT)calculations.Non-metal atoms as elec-tron donors can provide additional electrons to the O functional group on the catalyst surface,thereby reducing charge transfer from H to O and the interaction between H and O.The Gibbs free energy(ΔG H)of non-metal element-doped Ti_(3)C_(2)O_(2)is closer to 0 than that of pristine Ti_(3)C_(2)O_(2),demonstrating better hydrogen evolution performance.Furthermore,in the hydrogen evolution path,the desorption process is more inclined to the Hey-rovsky mechanism,and doping greatly reduces the energy barrier of the reaction,thereby improving the catalytic efficiency.The present results prove that doping with non-metallic elements is an effective means of improving the catalytic activity of Ti_(3)C_(2)O_(2)for hydrogen evolution.