A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was s...A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was studied in detail.PTFE/Al/W RMPs with steel-like and aluminum-like densities were prepared by a pressing/sintering process.The projectiles impacted a liquid-filled steel tank with front aluminum panel at approximately 1250 m/s.The corresponding cavity evolution characteristics and HRAM pressure were recorded by high-speed camera and pressure acquisition system,and further compared to those of steel and aluminum projectiles.Significantly different from the conical cavity formed by the inert metal projectile,the cavity formed by the RMP appeared as an ellipsoid with a conical front.The RMPs were demonstrated to enhance the radial growth velocity of cavity,the global HRAM pressure amplitude and the front panel damage,indicating the enhanced HRAM and structural damage behavior.Furthermore,combining the impact-induced fragmentation and deflagration characteristics,the cavity evolution of RMPs under the combined effect of kinetic energy impact and chemical energy release was analyzed.The mechanism of enhanced HRAM pressure induced by the RMPs was further revealed based on the theoretical model of the initial impact wave and the impulse analysis.Finally,the linear correlation between the deformation-thickness ratio and the non-dimensional impulse for the front panel was obtained and analyzed.It was determined that the enhanced near-field impulse induced by the RMPs was the dominant reason for the enhanced structural damage behavior.展开更多
Aqueous Zn-ion energy storage systems,which are expected to be integrated into intelligent electronics as a secure power supply,suffer poor reversibility of Zn anodes,predominantly associated with dendritic growth and...Aqueous Zn-ion energy storage systems,which are expected to be integrated into intelligent electronics as a secure power supply,suffer poor reversibility of Zn anodes,predominantly associated with dendritic growth and side reactions.This study introduces a polyanionic strategy to address these formidable issues by developing a hydrogel electrolyte(PACXHE)with carboxyl groups.Notably,the carboxyl groups within the hydrogel structure establish favorable channels to promote the transport of Zn^(2+)ions.They also expedite the desolvation of hydrated Zn^(2+)ions,leading to enhanced deposition kinetics.Additionally,these functional groups confine interfacial planar diffusion and promote preferential deposition along the(002)plane of Zn,enabling a smooth surface texture of the Zn anode.This multifaceted regulation successfully achieves the suppression of Zn dendrites and side reactions,thereby enhancing the electrochemical reversibility and service life during plating/stripping cycles.Therefore,such an electrolyte demonstrates a high average Coulombic efficiency of 97.7%for 500 cycles in the Zn‖Cu cell and exceptional cyclability with a duration of 480 h at 1 mA cm^(-2)/1 mA h cm^(-2)in the Zn‖Zn cell.Beyond that,the Zn-ion hybrid micro-capacitor employing PACXHE exhibits satisfactory cycling stability,energy density,and practicality for energy storage in flexible,intelligent electronics.The present polyanionic-based hydrogel strategy and the development of PACXHE represent significant advancements in the design of hydrogel electrolytes,paving the way for a more sustainable and efficient future in the energy storage field.展开更多
基金supported by the Youth Foundation of State Key Laboratory of Explosion Science and Technology (Grant No.QNKT22-12)the State Key Program of National Natural Science Foundation of China (Grant No.12132003)。
文摘A series of ballistic experiments were performed to investigate the damage behavior of high velocity reactive material projectiles(RMPs) impacting liquid-filled tanks,and the corresponding hydrodynamic ram(HRAM) was studied in detail.PTFE/Al/W RMPs with steel-like and aluminum-like densities were prepared by a pressing/sintering process.The projectiles impacted a liquid-filled steel tank with front aluminum panel at approximately 1250 m/s.The corresponding cavity evolution characteristics and HRAM pressure were recorded by high-speed camera and pressure acquisition system,and further compared to those of steel and aluminum projectiles.Significantly different from the conical cavity formed by the inert metal projectile,the cavity formed by the RMP appeared as an ellipsoid with a conical front.The RMPs were demonstrated to enhance the radial growth velocity of cavity,the global HRAM pressure amplitude and the front panel damage,indicating the enhanced HRAM and structural damage behavior.Furthermore,combining the impact-induced fragmentation and deflagration characteristics,the cavity evolution of RMPs under the combined effect of kinetic energy impact and chemical energy release was analyzed.The mechanism of enhanced HRAM pressure induced by the RMPs was further revealed based on the theoretical model of the initial impact wave and the impulse analysis.Finally,the linear correlation between the deformation-thickness ratio and the non-dimensional impulse for the front panel was obtained and analyzed.It was determined that the enhanced near-field impulse induced by the RMPs was the dominant reason for the enhanced structural damage behavior.
基金funded by the National Natural Science Foundation of China(U2003216)the National Key Research and Development Program of China(2022YFB4101600)+1 种基金the Shanghai Cooperation Organisation Project(2022E01020)the Scientific Research Program of the Higher Education Institution of Xinjiang(XJEDU2022P004)。
文摘Aqueous Zn-ion energy storage systems,which are expected to be integrated into intelligent electronics as a secure power supply,suffer poor reversibility of Zn anodes,predominantly associated with dendritic growth and side reactions.This study introduces a polyanionic strategy to address these formidable issues by developing a hydrogel electrolyte(PACXHE)with carboxyl groups.Notably,the carboxyl groups within the hydrogel structure establish favorable channels to promote the transport of Zn^(2+)ions.They also expedite the desolvation of hydrated Zn^(2+)ions,leading to enhanced deposition kinetics.Additionally,these functional groups confine interfacial planar diffusion and promote preferential deposition along the(002)plane of Zn,enabling a smooth surface texture of the Zn anode.This multifaceted regulation successfully achieves the suppression of Zn dendrites and side reactions,thereby enhancing the electrochemical reversibility and service life during plating/stripping cycles.Therefore,such an electrolyte demonstrates a high average Coulombic efficiency of 97.7%for 500 cycles in the Zn‖Cu cell and exceptional cyclability with a duration of 480 h at 1 mA cm^(-2)/1 mA h cm^(-2)in the Zn‖Zn cell.Beyond that,the Zn-ion hybrid micro-capacitor employing PACXHE exhibits satisfactory cycling stability,energy density,and practicality for energy storage in flexible,intelligent electronics.The present polyanionic-based hydrogel strategy and the development of PACXHE represent significant advancements in the design of hydrogel electrolytes,paving the way for a more sustainable and efficient future in the energy storage field.