Integration of digital twin(DT)and wireless channel provides new solution of channel modeling and simulation,and can assist to design,optimize and evaluate intelligent wireless communication system and networks.With D...Integration of digital twin(DT)and wireless channel provides new solution of channel modeling and simulation,and can assist to design,optimize and evaluate intelligent wireless communication system and networks.With DT channel modeling,the generated channel data can be closer to realistic channel measurements without requiring a prior channel model,and amount of channel data can be significantly increased.Artificial intelligence(AI)based modeling approach shows outstanding performance to solve such problems.In this work,a channel modeling method based on generative adversarial networks is proposed for DT channel,which can generate identical statistical distribution with measured channel.Model validation is conducted by comparing DT channel characteristics with measurements,and results show that DT channel leads to fairly good agreement with measured channel.Finally,a link-layer simulation is implemented based on DT channel.It is found that the proposed DT channel model can be well used to conduct link-layer simulation and its performance is comparable to using measurement data.The observations and results can facilitate the development of DT channel modeling and provide new thoughts for DT channel applications,as well as improving the performance and reliability of intelligent communication networking.展开更多
Metabolites can directly reflect and modulate cell responses and phenotypical changes by influencing energy balances,intercellular signals,and many other cellular functions throughout the lifespan of cells.Taking into...Metabolites can directly reflect and modulate cell responses and phenotypical changes by influencing energy balances,intercellular signals,and many other cellular functions throughout the lifespan of cells.Taking into account the heterogeneity of cells,single-cell metabolite analysis offers an insight into the functional process within one cell.Microfluidics as a powerful tool has attracted significant interest in the single-cell metabolite analysis field.The microfluidic platform is possible to observe,classify,and stimulate individual cells.It can also transport single-cell to subsequent analysis steps in a fast and controllable way to determine and analyze the composition and content of metabolites.The reviews of topics in microfluidics for single-cell metabolite analysis have been published in the past few years.However,most of them focused on metabolite analysis with mass spectrometry.Here,we covered the advances of microfluidic devices for single-cell metabolite analysis,with a focus on single-cell isolation and manipulation.What is more,we summarized the detection methods and applications of single-cell metabolites.展开更多
The coordination between neurogenesis and angiogenesis plays an important role in nerve tissue development and regeneration.Recently,using bioactive materials to drive neurogenic and angiogenic responses has gained in...The coordination between neurogenesis and angiogenesis plays an important role in nerve tissue development and regeneration.Recently,using bioactive materials to drive neurogenic and angiogenic responses has gained increasing attention.Understanding the neurovascular link between regulatory cues offers valuable insight into the mechanisms underlying nerve regeneration and the design of new bioactive materials.In this study,we utilized a dual-functionalized peptide nanofiber hydrogel presenting the brain-derived neurotrophic factor and vascular endothelial growth factor mimetic peptides RGIDKRHWNSQ(RGI)and KLTWQELYQLKYKGI(KLT)to construct an artificial neurovascular microenvironment.The dual-functionalized peptide nanofiber hydrogel enhanced the neurite outgrowth of pheochromocytoma(PC12)cells and tube-like structures formation of human umbilical vein endothelial cells(HUVECs)in vitro,and promoted rapid lesion infiltration of neural and vascular cells in a rat brain injury model.Using indirect co-culture models,we found that the dual-functionalized peptide hydrogel effectively mediated neurovascular crosstalk by regulating secretion of paracrine factors from PC12 cells and HUVECs.When the two cells types were directly co-cultured on the dua卜functionalized peptide hydrogel,the efficiency of cell-cell communication was enhanced,which further accelerated the differentiation and maturation of PC12 cells with an increased number of pseudopodia and spread morphology,and HUVECs tube-like structure formation.In summary,the dual-functionalized peptide nanofiber hydrogel successfully formed an artificial neurovascular niche to directly regulate the behaviors of neural and vascular cells and promote their neurovascular crosstalk through paracrine signaling and direct cell-cell contact.展开更多
基金supported by National Key R&D Program of China under Grant 2021YFB3901302 and 2021YFB2900301the National Natural Science Foundation of China under Grant 62271037,62001519,62221001,and U21A20445+1 种基金the State Key Laboratory of Advanced Rail Autonomous Operation under Grant RCS2022ZZ004the Fundamental Research Funds for the Central Universities under Grant 2022JBQY004.
文摘Integration of digital twin(DT)and wireless channel provides new solution of channel modeling and simulation,and can assist to design,optimize and evaluate intelligent wireless communication system and networks.With DT channel modeling,the generated channel data can be closer to realistic channel measurements without requiring a prior channel model,and amount of channel data can be significantly increased.Artificial intelligence(AI)based modeling approach shows outstanding performance to solve such problems.In this work,a channel modeling method based on generative adversarial networks is proposed for DT channel,which can generate identical statistical distribution with measured channel.Model validation is conducted by comparing DT channel characteristics with measurements,and results show that DT channel leads to fairly good agreement with measured channel.Finally,a link-layer simulation is implemented based on DT channel.It is found that the proposed DT channel model can be well used to conduct link-layer simulation and its performance is comparable to using measurement data.The observations and results can facilitate the development of DT channel modeling and provide new thoughts for DT channel applications,as well as improving the performance and reliability of intelligent communication networking.
基金1226 Engineering Health Major Project(Nos.BWS17J028 and AWS16J018)。
文摘Metabolites can directly reflect and modulate cell responses and phenotypical changes by influencing energy balances,intercellular signals,and many other cellular functions throughout the lifespan of cells.Taking into account the heterogeneity of cells,single-cell metabolite analysis offers an insight into the functional process within one cell.Microfluidics as a powerful tool has attracted significant interest in the single-cell metabolite analysis field.The microfluidic platform is possible to observe,classify,and stimulate individual cells.It can also transport single-cell to subsequent analysis steps in a fast and controllable way to determine and analyze the composition and content of metabolites.The reviews of topics in microfluidics for single-cell metabolite analysis have been published in the past few years.However,most of them focused on metabolite analysis with mass spectrometry.Here,we covered the advances of microfluidic devices for single-cell metabolite analysis,with a focus on single-cell isolation and manipulation.What is more,we summarized the detection methods and applications of single-cell metabolites.
基金support from the National Key R&D Program of China(Nos.2020YFC1107600 and 2018YFB0704304)the National Natural Science Foundation of China(Nos.31771056 and 31771052)Shandong Province Key R&D Program of China(No.2019JZZY011106).
文摘The coordination between neurogenesis and angiogenesis plays an important role in nerve tissue development and regeneration.Recently,using bioactive materials to drive neurogenic and angiogenic responses has gained increasing attention.Understanding the neurovascular link between regulatory cues offers valuable insight into the mechanisms underlying nerve regeneration and the design of new bioactive materials.In this study,we utilized a dual-functionalized peptide nanofiber hydrogel presenting the brain-derived neurotrophic factor and vascular endothelial growth factor mimetic peptides RGIDKRHWNSQ(RGI)and KLTWQELYQLKYKGI(KLT)to construct an artificial neurovascular microenvironment.The dual-functionalized peptide nanofiber hydrogel enhanced the neurite outgrowth of pheochromocytoma(PC12)cells and tube-like structures formation of human umbilical vein endothelial cells(HUVECs)in vitro,and promoted rapid lesion infiltration of neural and vascular cells in a rat brain injury model.Using indirect co-culture models,we found that the dual-functionalized peptide hydrogel effectively mediated neurovascular crosstalk by regulating secretion of paracrine factors from PC12 cells and HUVECs.When the two cells types were directly co-cultured on the dua卜functionalized peptide hydrogel,the efficiency of cell-cell communication was enhanced,which further accelerated the differentiation and maturation of PC12 cells with an increased number of pseudopodia and spread morphology,and HUVECs tube-like structure formation.In summary,the dual-functionalized peptide nanofiber hydrogel successfully formed an artificial neurovascular niche to directly regulate the behaviors of neural and vascular cells and promote their neurovascular crosstalk through paracrine signaling and direct cell-cell contact.