The problem of shield tunnel uplift is a common issue in tunnel construction.Due to the decrease in shear stiffness at the joints between the rings,uplift is typically observed as bending and dislocation deformation a...The problem of shield tunnel uplift is a common issue in tunnel construction.Due to the decrease in shear stiffness at the joints between the rings,uplift is typically observed as bending and dislocation deformation at these joints.Existing modeling methods typically rely on the Euler-Bernoulli beam theory,only considering the bending effect while disregarding shear deformation.Furthermore,the constraints on the shield tail are often neglected in existing models.In this study,an improved theoretical model of tunnel floating is proposed.The constraint effect of the shield machine shell on the tunnel structure is considered using the structural forms of two finite long beams and one semi-infinite long beam.Furthermore,the Timoshenko beam theory is adopted,providing a more accurate description of tunnel deformation,including both the bending effect and shear deformation,than existing models.Meanwhile,the buoyancy force and stratum resistance are calculated in a nonlinear manner.A reliable method for calculating the shear stiffness correction factor is proposed to better determination of the calculation parameters.The proposed theoretical model is validated through five cases using sitemonitored data.Its applicability and effectiveness are demonstrated.Furthermore,the influences of soil type,buried depth,and buoyancy force on the three key indicators of tunnel floating(i.e.the maximum uplift magnitude,the ring position with the fastest uplift race,and the ring position with the maximum uplift magnitude)are analyzed.The results indicate that the proposed model can provide a better understanding of the floating characteristics of the tunnel structure during construction.展开更多
It is a challenge to coordinate carrier-kinetics performance and the redox capacity of photogenerated charges synchronously at the atomic level for boosting photocatalytic activity.Herein,the atomic Ni was introduced ...It is a challenge to coordinate carrier-kinetics performance and the redox capacity of photogenerated charges synchronously at the atomic level for boosting photocatalytic activity.Herein,the atomic Ni was introduced into the lattice of hexagonal ZnIn_(2)S_(4) nanosheets(Ni/ZnIn_(2)S_(4))via directionalsubstituting Zn atom with the facile hydrothermal method.The electronic structure calculations indicate that the introduction of Ni atom effectively extracts more electrons and acts as active site for subsequent reduction reaction.Besides the optimized light absorption range,the elevation of Efand ECBendows Ni/ZnIn_(2)S_(4) photocatalyst with the increased electron concentration and the enhanced reduction ability for surface reaction.Moreover,ultrafast transient absorption spectroscopy,as well as a series of electrochemical tests,demonstrates that Ni/ZnIn_(2)S_(4) possesses 2.15 times longer lifetime of the excited charge carriers and an order of magnitude increase for carrier mobility and separation efficiency compared with pristine ZnIn_(2)S_(4).These efficient kinetics performances of charge carriers and enhanced redox capacity synergistically boost photocatalytic activity,in which a 3-times higher conversion efficiency of nitrobenzene reduction was achieved upon Ni/ZnIn_(2)S_(4).Our study not only provides in-depth insights into the effect of atomic directional-substitution on the kinetic behavior of photogenerated charges,but also opens an avenue to the synchronous optimization of redox capacity and carrier-kinetics performance for efficient solar energy conversion.展开更多
Real-time prediction of excavation-induced displacement of retaining pile during the deep excavation process is crucial for construction safety.This paper proposes a modified back analysis method with multi-objective ...Real-time prediction of excavation-induced displacement of retaining pile during the deep excavation process is crucial for construction safety.This paper proposes a modified back analysis method with multi-objective optimization procedure,which enables a real-time prediction of horizontal displacement of retaining pile during construction.As opposed to the traditional stage-by-stage back analysis,time series monitoring data till the current excavation stage are utilized to form a multi-objective function.Then,the multi-objective particle swarm optimization (MOPSO) algorithm is applied for parameter identification.The optimized model parameters are immediately adopted to predict the excavation-induced pile deformation in the continuous construction stages.To achieve efficient parameter optimization and real-time prediction of system behavior,the back propagation neural network (BPNN) is established to substitute the finite element model,which is further implemented together with MOPSO for automatic operation.The proposed approach is applied in the Taihu tunnel excavation project,where the effectiveness of the method is demonstrated via the comparisons with the site monitoring data.The method is reliable with a prediction accuracy of more than 90%.Moreover,different optimization algorithms,including non-dominated sorting genetic algorithm (NSGA-II),Pareto Envelope-based Selection Algorithm II (PESA-II) and MOPSO,are compared,and their influences on the prediction accuracy at different excavation stages are studied.The results show that MOPSO has the best performance for high dimensional optimization task.展开更多
Pd/Cu liquid-phase composite was utilized as the catalyst in this study to remove PH_(3) at low temperatures.The anti-heterotoxicity of catalysts in the PH_(3) catalytic oxidation purification process was carefully ex...Pd/Cu liquid-phase composite was utilized as the catalyst in this study to remove PH_(3) at low temperatures.The anti-heterotoxicity of catalysts in the PH_(3) catalytic oxidation purification process was carefully explored and pioneered.The catalytic performance,thermodynamics,kinetics,and catalytic oxidation mechanism of Pd/Cu liquid-phase catalyst catalytic oxidation of PH_(3) were thoroughly investigated.The results showed that Pd/Cu has a superior catalytic effect on the removal of PH_(3) in the gas mixture under low temperature.With CO as the carrier gas,the removal efficiency of PH_(3) could be maintained at 100%for nearly 450 min,indicating that the Pd/Cu liquid phase catalyst has good resistance to heterotoxicity.According to the thermodynamic,kinetic,and related characterization results of the PH_(3) purification process,the kinetic region of the gas–liquid reaction of PH_(3) absorption by Pd/Cu solution was an interfacial reaction.Pd was the primary catalyst and Cu was the secondary catalyst,and the adsorption of PH_(3)was a primary reaction.PH_(3) was spontaneously oxidized to H_(3)PO_(4) in the Pd/Cu catalytic system during the removal process.Pd was regenerated by O_(2) and Cu,increasing the activity and stability of the Pd/Cu catalyst in the sustain and efficient purification of PH_(3) in tail gas.展开更多
Light-metalloid-atom-doped Pd interstitial nanoalloy is promising candidate for electrocatalysis because of the favorable electronic effect.Herein,an innovative method was developed to synthesize C-doped Pd interstiti...Light-metalloid-atom-doped Pd interstitial nanoalloy is promising candidate for electrocatalysis because of the favorable electronic effect.Herein,an innovative method was developed to synthesize C-doped Pd interstitial nanoalloy using palladium acetate both as metal precursor and C dopant.Elaborate characterizations demonstrated that C atoms were successfully doped into the Pd lattice via self-catalytic decomposition of acetate ions.The as-synthesized C-doped Pd catalysts showed excellent activity and durable stability for formic acid electrooxidation.The mass activity and specific activity at 0.6 V of C-doped Pd were approximately 2.59 A/mg and 3.50 mA cm^(-2),i.e.,2.4 and 2.6 times of Pd,respectively.DFT calculations revealed that interstitial doping with C atoms induced differentiation of Pd sites.The strong noncovalent interaction between the Pd sites and the key intermediates endowed Pd with high-selectivity to direct routes and enhanced CO tolerance.This work presents a sites-differentiation strategy for metallic catalysts to improve the electrocatalysis.展开更多
The scenario of geothermal tunnel is commonly observed around the world,and increases with the new constructions in the long and deep tunnels,for example in China.Tunnel insulation is generally divided into active and...The scenario of geothermal tunnel is commonly observed around the world,and increases with the new constructions in the long and deep tunnels,for example in China.Tunnel insulation is generally divided into active and passive insulation.In passive insulation,it is an effective way to set low thermal con-ductivity materials as the thermal insulation layer as the choice of insulation material mainly depends on the thermal conductivity.Polymer is a kind of material with good geothermal performance,but there are relatively few studies.In this context,the transient plane source(TPS)method was used to measure the thermal conductivity of the developed polymer.Then,the temperature field of the high geothermal tunnel insulated by the non-aqueous reactive polymer layer was simulated.With the parametric analysis results,the suggestions for the tunnel layers were proposed accordingly.It revealed that the thermal conductivity of polymer first increases and then decreases with temperature.There are two rising sec-tions(?40e10?C and 20e90?C),one flat section(10e20?C)and one descending section(>90?C).It is observed the thermal conductivity of polymer increases with increase of the density of insulation layer and the density,and the thermal conductivity decreases when exposed to high temperatures.The temperature of the surrounding rocks increases with increase of the thermal conductivity and the thickness of polymer.Finally,a more economical thickness(5 cm)was proposed.Based on the parametric study,a thermal insulation layer with thermal conductivity less than 0.045 W/(m K),thickness of 5 cm and a density less than 0.12 g/cm 3 is suggested for practice.展开更多
With in-depth development of the Internet of Things(IoT)in various industries,the informatization process of various industries has also entered the fast lane.This article aims to solve the supply chain process proble...With in-depth development of the Internet of Things(IoT)in various industries,the informatization process of various industries has also entered the fast lane.This article aims to solve the supply chain process problem in e-commerce,focusing on the specific application of Internet of Things technology in e-commerce.Warehousing logistics is an important link in today’s e-commerce transactions.This article proposes a distributed analysis method for RFID-based e-commerce warehousing process optimization and an e-commerce supply chain management process based on Internet of Things technology.This article first introduces the advantages and disadvantages of shared IoT identification technology and the IoT resource sharing platform based on the three-layer abstract data model and representational state transfer(REST)style.Combining actual IoT applications and the characteristics of an existing platform,a REST-based IoT resource sharing platform is proposed.Combined with actual projects,a REST-based IoT resource sharing platform was built,and key technology experiments were conducted for verification.Finally,optimizing the e-commerce supply chain management process under Internet of Things technology and explaining the advantages of optimized e-commerce supply chain management are discussed.Research on this subject provides a theoretical basis for the application of the Internet of Things in e-commerce and has practical significance and practical value for managing service capabilities and service levels in e-commerce.展开更多
Follicular thyroid carcinoma(FTC)is the second most common form of thyroid malignancy,and it is associated with more aggressive growth and worse long-term survival outcomes relative to papillary thyroid carcinoma(PTC)...Follicular thyroid carcinoma(FTC)is the second most common form of thyroid malignancy,and it is associated with more aggressive growth and worse long-term survival outcomes relative to papillary thyroid carcinoma(PTC).Reliable approaches to preoperative FTC detection,however,remain to be established.Herein,a targeted Affibody-Au-Tripod nanoprobe was developed and successfully utilized to facilitate the targeted photoacoustic imaging(PAI)of epidermal growth factor receptor(EGFR)-positive cells and tumors.These Affibody-Au-Tripods were found to be highly sensitive and specific for cells expressing EGFR when used as a PA contrast agent in vitro,and studies conducted in an FTC-133 subcutaneous tumor model system in mice further revealed that these Affibody-Au-Tripods were able to specifically target these EGFR-expressing tumors while providing a strong photoacoustic signal in vivo.Importantly,these nanoprobes exhibited negligible cytotoxicity and robust chemical and physical stability,making Affibody-Au-Tripods promising candidates for targeted PAI-based FTC diagnosis.In addition,these nanoprobes have the potential to facilitate the individualized treatment of patients harboring EGFRpositive tumors.展开更多
The purpose of this paper is to provide a structured literature review of cross-border e-logistics research,uncover existing gaps and opportunities,try to find practical strategies to balance logistics costs and servi...The purpose of this paper is to provide a structured literature review of cross-border e-logistics research,uncover existing gaps and opportunities,try to find practical strategies to balance logistics costs and service levels,and improve logistics efficiency and customer satisfaction for future cross-border e-logistics research.Meanwhile this paper also uses the real data to test the tradeoff between transportation and warehousing cost.In addition,regression empirical analysis is used to make up for the lack of empirical drawbacks of many articles in the field and the result can be instructive and referential for cross-border e-commerce enterprises to make decisions on weighing logistics cost and service level to improve logistics efficiency.展开更多
Due to their broad functional plasticity,myeloid cells contribute to both liver injury and recovery during acetaminophen overdose-induced acute liver injury(APAP-ALI).A comprehensive understanding of cellular diversit...Due to their broad functional plasticity,myeloid cells contribute to both liver injury and recovery during acetaminophen overdose-induced acute liver injury(APAP-ALI).A comprehensive understanding of cellular diversity and intercellular crosstalk is essential to elucidate the mechanisms and to develop therapeutic strategies for APAP-ALI treatment.Here,we identified the function of IFN-I in the myeloid compartment during APAP-ALI.Utilizing single-cell RNA sequencing,we characterized the cellular atlas and dynamic progression of liver CD11b+cells post APAP-ALI in WT and STAT2 T403A mice,which was further validated by immunofluorescence staining,bulk RNA-seq,and functional experiments in vitro and in vivo.We identified IFN-I-dependent transcriptional programs in a three-way communication pathway that involved IFN-I synthesis in intermediate restorative macrophages,leading to CSF-1 production in aging neutrophils that ultimately enabled Trem2+restorative macrophage maturation,contributing to efficient liver repair.Overall,we uncovered the heterogeneity of hepatic myeloid cells in APAP-ALI at single-cell resolution and the therapeutic potential of IFN-I in the treatment of APAP-ALI.展开更多
The Janus kinase(JAK)/signal transducer and activator of transcription 3(STAT3)regulates the expression of various critical mediators of cancer and is considered as one of the central communication nodes in cell growt...The Janus kinase(JAK)/signal transducer and activator of transcription 3(STAT3)regulates the expression of various critical mediators of cancer and is considered as one of the central communication nodes in cell growth and survival.Marine natural products(MNP)represent great resources for discovery of bioactive lead compounds,especially anti-cancer agents.Through the medium-throughput screening of our in-house MNP library,Pretrichodermamide B,an epidithiodiketopiperazine,was identified as a JAK/STAT3 signaling inhibitor.Further studies identified that Pretrichodermamide B directly binds to STAT3,preventing phosphorylation and thus inhibiting JAK/STAT3 signaling.Moreover,it suppressed cancer cell growth,in vitro,at low micromolar concentrations and demonstrated efficacy in vivo by decreasing tumor growth in a xenograft mouse model.In addition,it was shown that Pretrichodermamide B was able to induce cell cycle arrest and promote cell apoptosis.This study demonstrated that Pretrichodermamide B is a novel STAT3 inhibitor,which should be considered for further exploration as a promising anti-cancer therapy.展开更多
类风湿关节炎(rheumatoid arthritis,RA)是以滑膜炎症、软骨及骨破坏为特征的慢性自身免疫性疾病,全球发病率为0.5%~1.0%[1]。RA起病隐匿,并呈波动性进展,临床不可治愈,如控制不佳,将导致不可逆性关节、器官损伤及功能障碍,因此如何实...类风湿关节炎(rheumatoid arthritis,RA)是以滑膜炎症、软骨及骨破坏为特征的慢性自身免疫性疾病,全球发病率为0.5%~1.0%[1]。RA起病隐匿,并呈波动性进展,临床不可治愈,如控制不佳,将导致不可逆性关节、器官损伤及功能障碍,因此如何实现早期诊断和治疗以控制炎症、减少和预防并发症至关重要[1-3]。2010年美国风湿病学会(American College of Rheumatology,ACR)/欧洲抗风湿病联盟(European League Against Rheumatism,EULAR)制定了RA新分类标准,即以临床症状及体征、实验室检查和影像学检查等进行综合评估[4-6]。肌骨超声对滑膜炎、腱鞘炎、软骨及骨损伤等RA基本病变检测的敏感度高[7],且在RA随访监测、预后评估方面均具有潜在优势,已成为RA辅助诊断常规影像学手段。然而,肌骨超声在操作者依赖性、重复性、精准量化评估等方面存在局限性,标准化超声评分[8]在反映RA疾病活动度变化方面存在延迟,导致其对RA诊疗有效性信息的反馈能力仍无法满足临床需求。展开更多
This paper introduces a new prefabricated recyclable double-row piles retaining system for excavations in silty clay ground.Laboratory model test and numerical simulation are conducted to study the system behavior upo...This paper introduces a new prefabricated recyclable double-row piles retaining system for excavations in silty clay ground.Laboratory model test and numerical simulation are conducted to study the system behavior upon excavation.The horizontal displacement(δ_(h)),Von Mises stress(δ_(M)),strain(ε),ground surface settlement(δ_(v)),and earth pressure are systematically investigated.Furthermore,the monitoring data of 13 excavation cases supported by double-row piles retaining system are presented and discussed.The experimental results can basically match the numerical results,and the maximumδ_(M),maximum bending moment(M_(max)),maximum horizontal displacement(δ_(hm))of structural members are all less than the tolerance limits.The ground surface settlement model of double-row piles retaining system consists of three zones,i.e.,rebound influence zone,primary influence zone and secondary influence zone.The dhm values are 0.07%–1.42%of the excavation depth(He).The maximum ground surface settlement(δ_(vm))is generally less than dhm.The ratio ofδ_(vm)=δ_(hm)varies between 0.09 and 0.76,with an average value of 0.5.The observed earth pressure on the retained side of front pile(paf)is about 0.53–0.57γH below the excavation surface.Above the excavation surface,p_(af)decreases dramatically when getting closer to the ground surface.展开更多
Non-alcohol-associated fatty liver/steatohepatitis(NAFL/NASH)has become the leading cause of liver disease worldwide.NASH,an advanced form of NAFL,can be progressive and more susceptible to developing cirrhosis and he...Non-alcohol-associated fatty liver/steatohepatitis(NAFL/NASH)has become the leading cause of liver disease worldwide.NASH,an advanced form of NAFL,can be progressive and more susceptible to developing cirrhosis and hepatocellular carcinoma.Currently,lifestyle interventions are the most essential and effective strategies for preventing and controlling NAFL without the development of fibrosis.While there are stll limited appropriate drugs specifically to treat NAFL/NASH,growing progress is being seen in elucidating the pathogenesis and identifying therapeutic targets.In this review,we discussed recent developments in etiology and prospective therapeutic targets,as well as pharmacological candidates in pre/clinical trials and patents,with a focus on diabetes,hepatic lipid metabolism,inflammation,and fibrosis.Importantly,growing evidence elucidates that the disruption of the gut-liver axis and microbederived metabolites drive the pathogenesis of NAFL/NASH.Extracellular vesicles(EVs)act as a signaling mediator,resulting in lipid accumulation,macrophage and hepatic stellate cell activation,further promoting inflammation and liver fibrosis progression during the development of NAFL/NASH.Targeting gut microbiota or EVs may serve as new strategies for the treatment of NAFL/NASH.Finally,other mechanisms,such as cell therapy and genetic approaches,also have enormous therapeutic potential.Incorporating drugs with different mechanisms and personalized medicine may improve the efficacy to better benefit patients with NAFL/NASH.展开更多
Lithium metal has a very outstanding theoretical capacity(3860 mAh/g)and is one of the most superior anode materials for high energy density batteries.However,the uncontrollable dendrite growth and the fo rmation of&q...Lithium metal has a very outstanding theoretical capacity(3860 mAh/g)and is one of the most superior anode materials for high energy density batteries.However,the uncontrollable dendrite growth and the fo rmation of"dead lithium"are the important hidden dangers of short cycle life and low safety.However,the uncontrollable dendrite growth and the fo rmation of dead lithium leads to short cycle life and hidden dange r,which hinder its practical application.Controlling the nucleation and growth process of lithium is an effective strategy to inhibit lithium dendrite.Herein,a simple in situ self-catalytic method is used to construct nitrogen doped carbon nanotube arrays on stainless steel mesh(N-CNT@SS)as a lithium composite anode.The N-doped CNTs provide a great number of N-functional groups,which enhance the lithiophilic of anode and provide a large number of uniform nucleation sites,hence it has excellent structural stability for cycles.The arrays provide neat lithium-ion transport channels to uniform lithiumion flux and inhibits dendrite generation,revealed by the COMSOL multi-physics concentration field simulation.The N-CNT@SS composite anode sustain stable at 98.9%over 300 cycles at 1 mA/cm2.NCNT@SS as the anode is coupled LiFePO_(4)(LFP)as the cathode construct a full battery,demonstrating excellent cycling stability with a capacity of 152.33 mAh/g and capacity retaining ratio of 95.4%after 100 cycles at 0.5 C.展开更多
Blue emitting perovskite ink obtained from cesium lead halide quantum dots bearing chlorine(CsPbClxBr3-x,0<x<3)suffers from the low photoluminescence quantum yield and poor stability.Cesium lead bromine(CsPbBr3)...Blue emitting perovskite ink obtained from cesium lead halide quantum dots bearing chlorine(CsPbClxBr3-x,0<x<3)suffers from the low photoluminescence quantum yield and poor stability.Cesium lead bromine(CsPbBr3)quantum dots free of chlori ne have more stable crystalstructure and fewer crystal defects.Precise control of crystal sizes and surface passivation comporients of CsPbBr3 quantum dots is crucial for the best use of quantum confinement effect and blueshift of emission wavelength to blue region.Here,by polymerizing acrylamide under UV-light irradiation to form polymer gel networks in dimethyl sulfoxide(DMSO)with CsPbBr3 precursors and passivating agents trapped,wesuccessfully prepared novel sustained release tablets with different shapes and sizes.Thanks to the limitation of the polymer networks onsolve nt releasi ng,the resulting CsPbBr3 qua ntum dots have the average size of 1.1±0.2 nm.On the basis of the excelle nt quantum confin eme nteffect and optimized surface passivation,the obtained PQD ink can emit high quality blue light for more than 6 weeks.This work elucidates anew and convenient technique to prepare blue emission perovskite quantum dots ink with high stability and photoluminescence qua ntumyield and provides a great potential technology for the preparation of perovskite optoelectronic devices.展开更多
基金the National Natural Science Foundation of China (Grant Nos.52379111,51979270 and 52208380).
文摘The problem of shield tunnel uplift is a common issue in tunnel construction.Due to the decrease in shear stiffness at the joints between the rings,uplift is typically observed as bending and dislocation deformation at these joints.Existing modeling methods typically rely on the Euler-Bernoulli beam theory,only considering the bending effect while disregarding shear deformation.Furthermore,the constraints on the shield tail are often neglected in existing models.In this study,an improved theoretical model of tunnel floating is proposed.The constraint effect of the shield machine shell on the tunnel structure is considered using the structural forms of two finite long beams and one semi-infinite long beam.Furthermore,the Timoshenko beam theory is adopted,providing a more accurate description of tunnel deformation,including both the bending effect and shear deformation,than existing models.Meanwhile,the buoyancy force and stratum resistance are calculated in a nonlinear manner.A reliable method for calculating the shear stiffness correction factor is proposed to better determination of the calculation parameters.The proposed theoretical model is validated through five cases using sitemonitored data.Its applicability and effectiveness are demonstrated.Furthermore,the influences of soil type,buried depth,and buoyancy force on the three key indicators of tunnel floating(i.e.the maximum uplift magnitude,the ring position with the fastest uplift race,and the ring position with the maximum uplift magnitude)are analyzed.The results indicate that the proposed model can provide a better understanding of the floating characteristics of the tunnel structure during construction.
基金the National Natural Science Foundation of China (22209091)the Natural Science Foundation of Shandong Province (ZR2020QB057)+1 种基金the Key Program of National Natural Science Foundation of China (22133006)the Yankuang Group 2019 Science and Technology Program (YKKJ2019AJ05JG-R60)。
文摘It is a challenge to coordinate carrier-kinetics performance and the redox capacity of photogenerated charges synchronously at the atomic level for boosting photocatalytic activity.Herein,the atomic Ni was introduced into the lattice of hexagonal ZnIn_(2)S_(4) nanosheets(Ni/ZnIn_(2)S_(4))via directionalsubstituting Zn atom with the facile hydrothermal method.The electronic structure calculations indicate that the introduction of Ni atom effectively extracts more electrons and acts as active site for subsequent reduction reaction.Besides the optimized light absorption range,the elevation of Efand ECBendows Ni/ZnIn_(2)S_(4) photocatalyst with the increased electron concentration and the enhanced reduction ability for surface reaction.Moreover,ultrafast transient absorption spectroscopy,as well as a series of electrochemical tests,demonstrates that Ni/ZnIn_(2)S_(4) possesses 2.15 times longer lifetime of the excited charge carriers and an order of magnitude increase for carrier mobility and separation efficiency compared with pristine ZnIn_(2)S_(4).These efficient kinetics performances of charge carriers and enhanced redox capacity synergistically boost photocatalytic activity,in which a 3-times higher conversion efficiency of nitrobenzene reduction was achieved upon Ni/ZnIn_(2)S_(4).Our study not only provides in-depth insights into the effect of atomic directional-substitution on the kinetic behavior of photogenerated charges,but also opens an avenue to the synchronous optimization of redox capacity and carrier-kinetics performance for efficient solar energy conversion.
基金supported by the National Natural Science Foundation of China(Grant Nos.52208380 and 51979270)the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.SKLGME021022).
文摘Real-time prediction of excavation-induced displacement of retaining pile during the deep excavation process is crucial for construction safety.This paper proposes a modified back analysis method with multi-objective optimization procedure,which enables a real-time prediction of horizontal displacement of retaining pile during construction.As opposed to the traditional stage-by-stage back analysis,time series monitoring data till the current excavation stage are utilized to form a multi-objective function.Then,the multi-objective particle swarm optimization (MOPSO) algorithm is applied for parameter identification.The optimized model parameters are immediately adopted to predict the excavation-induced pile deformation in the continuous construction stages.To achieve efficient parameter optimization and real-time prediction of system behavior,the back propagation neural network (BPNN) is established to substitute the finite element model,which is further implemented together with MOPSO for automatic operation.The proposed approach is applied in the Taihu tunnel excavation project,where the effectiveness of the method is demonstrated via the comparisons with the site monitoring data.The method is reliable with a prediction accuracy of more than 90%.Moreover,different optimization algorithms,including non-dominated sorting genetic algorithm (NSGA-II),Pareto Envelope-based Selection Algorithm II (PESA-II) and MOPSO,are compared,and their influences on the prediction accuracy at different excavation stages are studied.The results show that MOPSO has the best performance for high dimensional optimization task.
基金supported by the National Key Research and Development Plan (2018YFC1900203)The National Science Fund for Distinguished Young Scholars (52000094)The National Natural Science Foundation of China (51968033)。
文摘Pd/Cu liquid-phase composite was utilized as the catalyst in this study to remove PH_(3) at low temperatures.The anti-heterotoxicity of catalysts in the PH_(3) catalytic oxidation purification process was carefully explored and pioneered.The catalytic performance,thermodynamics,kinetics,and catalytic oxidation mechanism of Pd/Cu liquid-phase catalyst catalytic oxidation of PH_(3) were thoroughly investigated.The results showed that Pd/Cu has a superior catalytic effect on the removal of PH_(3) in the gas mixture under low temperature.With CO as the carrier gas,the removal efficiency of PH_(3) could be maintained at 100%for nearly 450 min,indicating that the Pd/Cu liquid phase catalyst has good resistance to heterotoxicity.According to the thermodynamic,kinetic,and related characterization results of the PH_(3) purification process,the kinetic region of the gas–liquid reaction of PH_(3) absorption by Pd/Cu solution was an interfacial reaction.Pd was the primary catalyst and Cu was the secondary catalyst,and the adsorption of PH_(3)was a primary reaction.PH_(3) was spontaneously oxidized to H_(3)PO_(4) in the Pd/Cu catalytic system during the removal process.Pd was regenerated by O_(2) and Cu,increasing the activity and stability of the Pd/Cu catalyst in the sustain and efficient purification of PH_(3) in tail gas.
基金the financial support from the National Natural Science Foundation of China(51904191)the Overseas High-level Talents Foundation of Shenzhen。
文摘Light-metalloid-atom-doped Pd interstitial nanoalloy is promising candidate for electrocatalysis because of the favorable electronic effect.Herein,an innovative method was developed to synthesize C-doped Pd interstitial nanoalloy using palladium acetate both as metal precursor and C dopant.Elaborate characterizations demonstrated that C atoms were successfully doped into the Pd lattice via self-catalytic decomposition of acetate ions.The as-synthesized C-doped Pd catalysts showed excellent activity and durable stability for formic acid electrooxidation.The mass activity and specific activity at 0.6 V of C-doped Pd were approximately 2.59 A/mg and 3.50 mA cm^(-2),i.e.,2.4 and 2.6 times of Pd,respectively.DFT calculations revealed that interstitial doping with C atoms induced differentiation of Pd sites.The strong noncovalent interaction between the Pd sites and the key intermediates endowed Pd with high-selectivity to direct routes and enhanced CO tolerance.This work presents a sites-differentiation strategy for metallic catalysts to improve the electrocatalysis.
文摘The scenario of geothermal tunnel is commonly observed around the world,and increases with the new constructions in the long and deep tunnels,for example in China.Tunnel insulation is generally divided into active and passive insulation.In passive insulation,it is an effective way to set low thermal con-ductivity materials as the thermal insulation layer as the choice of insulation material mainly depends on the thermal conductivity.Polymer is a kind of material with good geothermal performance,but there are relatively few studies.In this context,the transient plane source(TPS)method was used to measure the thermal conductivity of the developed polymer.Then,the temperature field of the high geothermal tunnel insulated by the non-aqueous reactive polymer layer was simulated.With the parametric analysis results,the suggestions for the tunnel layers were proposed accordingly.It revealed that the thermal conductivity of polymer first increases and then decreases with temperature.There are two rising sec-tions(?40e10?C and 20e90?C),one flat section(10e20?C)and one descending section(>90?C).It is observed the thermal conductivity of polymer increases with increase of the density of insulation layer and the density,and the thermal conductivity decreases when exposed to high temperatures.The temperature of the surrounding rocks increases with increase of the thermal conductivity and the thickness of polymer.Finally,a more economical thickness(5 cm)was proposed.Based on the parametric study,a thermal insulation layer with thermal conductivity less than 0.045 W/(m K),thickness of 5 cm and a density less than 0.12 g/cm 3 is suggested for practice.
文摘With in-depth development of the Internet of Things(IoT)in various industries,the informatization process of various industries has also entered the fast lane.This article aims to solve the supply chain process problem in e-commerce,focusing on the specific application of Internet of Things technology in e-commerce.Warehousing logistics is an important link in today’s e-commerce transactions.This article proposes a distributed analysis method for RFID-based e-commerce warehousing process optimization and an e-commerce supply chain management process based on Internet of Things technology.This article first introduces the advantages and disadvantages of shared IoT identification technology and the IoT resource sharing platform based on the three-layer abstract data model and representational state transfer(REST)style.Combining actual IoT applications and the characteristics of an existing platform,a REST-based IoT resource sharing platform is proposed.Combined with actual projects,a REST-based IoT resource sharing platform was built,and key technology experiments were conducted for verification.Finally,optimizing the e-commerce supply chain management process under Internet of Things technology and explaining the advantages of optimized e-commerce supply chain management are discussed.Research on this subject provides a theoretical basis for the application of the Internet of Things in e-commerce and has practical significance and practical value for managing service capabilities and service levels in e-commerce.
基金supported by the National Natural Science Foundation of China(81421004,81301268)Beijing Nova Program Interdisciplinary Cooperation Project (xxjc201812)+2 种基金International S&T Cooperation Program of China(2015DFA30440)Beijing Nova Program(Z131107000413063)CAMS Innovation Fund for Medical Sciences(CIFMS 2020-I2M-C&T-B-035)。
文摘Follicular thyroid carcinoma(FTC)is the second most common form of thyroid malignancy,and it is associated with more aggressive growth and worse long-term survival outcomes relative to papillary thyroid carcinoma(PTC).Reliable approaches to preoperative FTC detection,however,remain to be established.Herein,a targeted Affibody-Au-Tripod nanoprobe was developed and successfully utilized to facilitate the targeted photoacoustic imaging(PAI)of epidermal growth factor receptor(EGFR)-positive cells and tumors.These Affibody-Au-Tripods were found to be highly sensitive and specific for cells expressing EGFR when used as a PA contrast agent in vitro,and studies conducted in an FTC-133 subcutaneous tumor model system in mice further revealed that these Affibody-Au-Tripods were able to specifically target these EGFR-expressing tumors while providing a strong photoacoustic signal in vivo.Importantly,these nanoprobes exhibited negligible cytotoxicity and robust chemical and physical stability,making Affibody-Au-Tripods promising candidates for targeted PAI-based FTC diagnosis.In addition,these nanoprobes have the potential to facilitate the individualized treatment of patients harboring EGFRpositive tumors.
文摘The purpose of this paper is to provide a structured literature review of cross-border e-logistics research,uncover existing gaps and opportunities,try to find practical strategies to balance logistics costs and service levels,and improve logistics efficiency and customer satisfaction for future cross-border e-logistics research.Meanwhile this paper also uses the real data to test the tradeoff between transportation and warehousing cost.In addition,regression empirical analysis is used to make up for the lack of empirical drawbacks of many articles in the field and the result can be instructive and referential for cross-border e-commerce enterprises to make decisions on weighing logistics cost and service level to improve logistics efficiency.
基金supported by the Key R&D Program of Shandong Province(2020CXGC010503)Shandong Provincial Key Laboratory Platform Project(2021ZDSYS11)Major Program of National Natural Science Foundation of China(81991525).
文摘Due to their broad functional plasticity,myeloid cells contribute to both liver injury and recovery during acetaminophen overdose-induced acute liver injury(APAP-ALI).A comprehensive understanding of cellular diversity and intercellular crosstalk is essential to elucidate the mechanisms and to develop therapeutic strategies for APAP-ALI treatment.Here,we identified the function of IFN-I in the myeloid compartment during APAP-ALI.Utilizing single-cell RNA sequencing,we characterized the cellular atlas and dynamic progression of liver CD11b+cells post APAP-ALI in WT and STAT2 T403A mice,which was further validated by immunofluorescence staining,bulk RNA-seq,and functional experiments in vitro and in vivo.We identified IFN-I-dependent transcriptional programs in a three-way communication pathway that involved IFN-I synthesis in intermediate restorative macrophages,leading to CSF-1 production in aging neutrophils that ultimately enabled Trem2+restorative macrophage maturation,contributing to efficient liver repair.Overall,we uncovered the heterogeneity of hepatic myeloid cells in APAP-ALI at single-cell resolution and the therapeutic potential of IFN-I in the treatment of APAP-ALI.
基金This work was supported by National Natural Science Foundation of China(NOs.81874300,41830535,81991525,and 42176109)Key R&D Program of Shandong Province(NO.2020CXGC010503)+2 种基金Shandong Provincial Natural Science Foundation(Major Basic Research Projects,NO.ZR2019ZD18)the Fundamental Research Funds for the Central Universities(NO.202241008)Taishan Scholars Foundation of Shandong Province,China.
文摘The Janus kinase(JAK)/signal transducer and activator of transcription 3(STAT3)regulates the expression of various critical mediators of cancer and is considered as one of the central communication nodes in cell growth and survival.Marine natural products(MNP)represent great resources for discovery of bioactive lead compounds,especially anti-cancer agents.Through the medium-throughput screening of our in-house MNP library,Pretrichodermamide B,an epidithiodiketopiperazine,was identified as a JAK/STAT3 signaling inhibitor.Further studies identified that Pretrichodermamide B directly binds to STAT3,preventing phosphorylation and thus inhibiting JAK/STAT3 signaling.Moreover,it suppressed cancer cell growth,in vitro,at low micromolar concentrations and demonstrated efficacy in vivo by decreasing tumor growth in a xenograft mouse model.In addition,it was shown that Pretrichodermamide B was able to induce cell cycle arrest and promote cell apoptosis.This study demonstrated that Pretrichodermamide B is a novel STAT3 inhibitor,which should be considered for further exploration as a promising anti-cancer therapy.
文摘类风湿关节炎(rheumatoid arthritis,RA)是以滑膜炎症、软骨及骨破坏为特征的慢性自身免疫性疾病,全球发病率为0.5%~1.0%[1]。RA起病隐匿,并呈波动性进展,临床不可治愈,如控制不佳,将导致不可逆性关节、器官损伤及功能障碍,因此如何实现早期诊断和治疗以控制炎症、减少和预防并发症至关重要[1-3]。2010年美国风湿病学会(American College of Rheumatology,ACR)/欧洲抗风湿病联盟(European League Against Rheumatism,EULAR)制定了RA新分类标准,即以临床症状及体征、实验室检查和影像学检查等进行综合评估[4-6]。肌骨超声对滑膜炎、腱鞘炎、软骨及骨损伤等RA基本病变检测的敏感度高[7],且在RA随访监测、预后评估方面均具有潜在优势,已成为RA辅助诊断常规影像学手段。然而,肌骨超声在操作者依赖性、重复性、精准量化评估等方面存在局限性,标准化超声评分[8]在反映RA疾病活动度变化方面存在延迟,导致其对RA诊疗有效性信息的反馈能力仍无法满足临床需求。
基金supported by the National Key Research and Development Program of China(Grant No.2021YFC3100803)the National Natural Science Founda tion of China(Grant Nos.52208380 and 52078506)+2 种基金the Guangdong Basic and Applied Basic ResearchFoundation,China(Grant No.2023A1515012159)Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.SKLGME021022)the Science and Technology Program of Guangzhou Municipal Construction Group Co.,Ltd.,China(Grant No.2022-KJ004).
文摘This paper introduces a new prefabricated recyclable double-row piles retaining system for excavations in silty clay ground.Laboratory model test and numerical simulation are conducted to study the system behavior upon excavation.The horizontal displacement(δ_(h)),Von Mises stress(δ_(M)),strain(ε),ground surface settlement(δ_(v)),and earth pressure are systematically investigated.Furthermore,the monitoring data of 13 excavation cases supported by double-row piles retaining system are presented and discussed.The experimental results can basically match the numerical results,and the maximumδ_(M),maximum bending moment(M_(max)),maximum horizontal displacement(δ_(hm))of structural members are all less than the tolerance limits.The ground surface settlement model of double-row piles retaining system consists of three zones,i.e.,rebound influence zone,primary influence zone and secondary influence zone.The dhm values are 0.07%–1.42%of the excavation depth(He).The maximum ground surface settlement(δ_(vm))is generally less than dhm.The ratio ofδ_(vm)=δ_(hm)varies between 0.09 and 0.76,with an average value of 0.5.The observed earth pressure on the retained side of front pile(paf)is about 0.53–0.57γH below the excavation surface.Above the excavation surface,p_(af)decreases dramatically when getting closer to the ground surface.
基金This work was supported by the Major Program of National Natural Science Foundation of China(81991525)Key R&D Program of Shandong Province(2020CXGC010503)This work was also supported by grants from the National Institutes of Health(R00AA026648 to K.L.P.).
文摘Non-alcohol-associated fatty liver/steatohepatitis(NAFL/NASH)has become the leading cause of liver disease worldwide.NASH,an advanced form of NAFL,can be progressive and more susceptible to developing cirrhosis and hepatocellular carcinoma.Currently,lifestyle interventions are the most essential and effective strategies for preventing and controlling NAFL without the development of fibrosis.While there are stll limited appropriate drugs specifically to treat NAFL/NASH,growing progress is being seen in elucidating the pathogenesis and identifying therapeutic targets.In this review,we discussed recent developments in etiology and prospective therapeutic targets,as well as pharmacological candidates in pre/clinical trials and patents,with a focus on diabetes,hepatic lipid metabolism,inflammation,and fibrosis.Importantly,growing evidence elucidates that the disruption of the gut-liver axis and microbederived metabolites drive the pathogenesis of NAFL/NASH.Extracellular vesicles(EVs)act as a signaling mediator,resulting in lipid accumulation,macrophage and hepatic stellate cell activation,further promoting inflammation and liver fibrosis progression during the development of NAFL/NASH.Targeting gut microbiota or EVs may serve as new strategies for the treatment of NAFL/NASH.Finally,other mechanisms,such as cell therapy and genetic approaches,also have enormous therapeutic potential.Incorporating drugs with different mechanisms and personalized medicine may improve the efficacy to better benefit patients with NAFL/NASH.
基金supported by the National Natural Science Foundation of China(No.21646012)the State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(No.2019DX13)+2 种基金China Postdoctoral Science Foundation(Nos.2016M600253,2017T100246)the Post-doctoralFoundation of Heilongjiang Province(No.LBH-Z16060)the Fundamental Research Funds for the Central Universities(No.HIT.NSRIF.201836)。
文摘Lithium metal has a very outstanding theoretical capacity(3860 mAh/g)and is one of the most superior anode materials for high energy density batteries.However,the uncontrollable dendrite growth and the fo rmation of"dead lithium"are the important hidden dangers of short cycle life and low safety.However,the uncontrollable dendrite growth and the fo rmation of dead lithium leads to short cycle life and hidden dange r,which hinder its practical application.Controlling the nucleation and growth process of lithium is an effective strategy to inhibit lithium dendrite.Herein,a simple in situ self-catalytic method is used to construct nitrogen doped carbon nanotube arrays on stainless steel mesh(N-CNT@SS)as a lithium composite anode.The N-doped CNTs provide a great number of N-functional groups,which enhance the lithiophilic of anode and provide a large number of uniform nucleation sites,hence it has excellent structural stability for cycles.The arrays provide neat lithium-ion transport channels to uniform lithiumion flux and inhibits dendrite generation,revealed by the COMSOL multi-physics concentration field simulation.The N-CNT@SS composite anode sustain stable at 98.9%over 300 cycles at 1 mA/cm2.NCNT@SS as the anode is coupled LiFePO_(4)(LFP)as the cathode construct a full battery,demonstrating excellent cycling stability with a capacity of 152.33 mAh/g and capacity retaining ratio of 95.4%after 100 cycles at 0.5 C.
基金The work is supported by the National Natural Science Foundation of China(No.21761132007)the National Key R&D Program of China(No.2016YFE0114900).
文摘Blue emitting perovskite ink obtained from cesium lead halide quantum dots bearing chlorine(CsPbClxBr3-x,0<x<3)suffers from the low photoluminescence quantum yield and poor stability.Cesium lead bromine(CsPbBr3)quantum dots free of chlori ne have more stable crystalstructure and fewer crystal defects.Precise control of crystal sizes and surface passivation comporients of CsPbBr3 quantum dots is crucial for the best use of quantum confinement effect and blueshift of emission wavelength to blue region.Here,by polymerizing acrylamide under UV-light irradiation to form polymer gel networks in dimethyl sulfoxide(DMSO)with CsPbBr3 precursors and passivating agents trapped,wesuccessfully prepared novel sustained release tablets with different shapes and sizes.Thanks to the limitation of the polymer networks onsolve nt releasi ng,the resulting CsPbBr3 qua ntum dots have the average size of 1.1±0.2 nm.On the basis of the excelle nt quantum confin eme nteffect and optimized surface passivation,the obtained PQD ink can emit high quality blue light for more than 6 weeks.This work elucidates anew and convenient technique to prepare blue emission perovskite quantum dots ink with high stability and photoluminescence qua ntumyield and provides a great potential technology for the preparation of perovskite optoelectronic devices.