Alzheimer's disease(AD) is the most common form of dementia in the older population, however, the precise cause of the disease is unknown. The neuropathology is characterized by the presence of aggregates formed by...Alzheimer's disease(AD) is the most common form of dementia in the older population, however, the precise cause of the disease is unknown. The neuropathology is characterized by the presence of aggregates formed by amyloid-β(Aβ) peptide and phosphorylated tau; which is accompanied by progressive impairment of memory. Diverse signaling pathways are linked to AD, and among these the Wnt signaling pathway is becoming increasingly relevant, since it plays essential roles in the adult brain. Initially, Wnt signaling activation was proposed as a neuroprotective mechanism against Aβ toxicity. Later, it was reported that it participates in tau phosphorylation and processes of learning and memory. Interestingly, in the last years we demonstrated that Wnt signaling is fundamental in amyloid precursor protein(APP) processing and that Wnt dysfunction results in Aβ production and aggregation in vitro. Recent in vivo studies reported that loss of canonical Wnt signaling exacerbates amyloid deposition in a transgenic(Tg) mouse model of AD. Finally, we showed that inhibition of Wnt signaling in a Tg mouse previously at the appearance of AD signs, resulted in memory loss, tau phosphorylation and Aβ formation and aggregation; indicating that Wnt dysfunction accelerated the onset of AD. More importantly, Wnt signaling loss promoted cognitive impairment, tau phosphorylation and Aβ1–42 production in the hippocampus of wild-type(WT) mice, contributing to the development of an Alzheimer's-like neurophatology. Therefore, in this review we highlight the importance of Wnt/β-catenin signaling dysfunction in the onset of AD and propose that the loss of canonical Wnt signaling is a triggering factor of AD.展开更多
During normal aging,there is a decline in all physiological functions in the organism.One of the most affected organs is the brain,where neurons lose their proper synaptic function leading to cognitive impairment.Agin...During normal aging,there is a decline in all physiological functions in the organism.One of the most affected organs is the brain,where neurons lose their proper synaptic function leading to cognitive impairment.Aging is one of the main risk factors for the development of neurodegenerative diseases,such as Alzheimer’s disease.One of the main responsible factors for synaptic dysfunction in aging and neurodegenerative diseases is the accumulation of abnormal proteins forming aggregates.The most studied brain aggregates are the senile plaques,formed by Aβpeptide;however,the aggregates formed by phosphorylated tau protein have gained relevance in the last years by their toxicity.It is reported that neurons undergo severe mitochondrial dysfunction with age,with a decrease in adenosine 5′-triphosphate production,loss of the mitochondrial membrane potential,redox imbalance,impaired mitophagy,and loss of calcium buffer capacity.Interestingly,abnormal tau protein interacts with several mitochondrial proteins,suggesting that it could induce mitochondrial dysfunction.Nevertheless,whether tau-mediated mitochondrial dysfunction occurs indirectly or directly is still unknown.A recent study of our laboratory shows that phosphorylated tau at Ser396/404(known as PHF-1),an epitope commonly related to pathology,accumulates inside mitochondria during normal aging.This accumulation occurs preferentially in synaptic mitochondria,which suggests that it may contribute to the synaptic failure and cognitive impairment seen in aged individuals.Here,we review the main tau modifications promoting mitochondrial dysfunction,and the possible mechanism involved.Also,we discuss the evidence that supports the possibility that phosphorylated tau accumulation in synaptic mitochondria promotes synaptic and cognitive impairment in aging.Finally,we show evidence and argue about the presence of phosphorylated tau PHF-1 inside mitochondria in Alzheimer’s disease,which could be considered as an early event in the neurodegenerative process.Thus,phosphorylated tau PHF-1 inside the mitochondria could be considered such a potential therapeutic target to prevent or attenuate age-related cognitive impairment.展开更多
基金supported by grants PFB (Basal Financing Program) 12/2007 from the Basal Centre for Excellence in Science and Technology and FONDECYT,No.1120156(to NCI)a pre-doctoral fellowship from the National Commission of Science and Technology of Chile(CONICYT)(to CTR)
文摘Alzheimer's disease(AD) is the most common form of dementia in the older population, however, the precise cause of the disease is unknown. The neuropathology is characterized by the presence of aggregates formed by amyloid-β(Aβ) peptide and phosphorylated tau; which is accompanied by progressive impairment of memory. Diverse signaling pathways are linked to AD, and among these the Wnt signaling pathway is becoming increasingly relevant, since it plays essential roles in the adult brain. Initially, Wnt signaling activation was proposed as a neuroprotective mechanism against Aβ toxicity. Later, it was reported that it participates in tau phosphorylation and processes of learning and memory. Interestingly, in the last years we demonstrated that Wnt signaling is fundamental in amyloid precursor protein(APP) processing and that Wnt dysfunction results in Aβ production and aggregation in vitro. Recent in vivo studies reported that loss of canonical Wnt signaling exacerbates amyloid deposition in a transgenic(Tg) mouse model of AD. Finally, we showed that inhibition of Wnt signaling in a Tg mouse previously at the appearance of AD signs, resulted in memory loss, tau phosphorylation and Aβ formation and aggregation; indicating that Wnt dysfunction accelerated the onset of AD. More importantly, Wnt signaling loss promoted cognitive impairment, tau phosphorylation and Aβ1–42 production in the hippocampus of wild-type(WT) mice, contributing to the development of an Alzheimer's-like neurophatology. Therefore, in this review we highlight the importance of Wnt/β-catenin signaling dysfunction in the onset of AD and propose that the loss of canonical Wnt signaling is a triggering factor of AD.
基金supported by FONDECYT,No.11170546,CONICYT PAI,No.77170091(to CTR)FONDECYT,No.3210591(to CJ).
文摘During normal aging,there is a decline in all physiological functions in the organism.One of the most affected organs is the brain,where neurons lose their proper synaptic function leading to cognitive impairment.Aging is one of the main risk factors for the development of neurodegenerative diseases,such as Alzheimer’s disease.One of the main responsible factors for synaptic dysfunction in aging and neurodegenerative diseases is the accumulation of abnormal proteins forming aggregates.The most studied brain aggregates are the senile plaques,formed by Aβpeptide;however,the aggregates formed by phosphorylated tau protein have gained relevance in the last years by their toxicity.It is reported that neurons undergo severe mitochondrial dysfunction with age,with a decrease in adenosine 5′-triphosphate production,loss of the mitochondrial membrane potential,redox imbalance,impaired mitophagy,and loss of calcium buffer capacity.Interestingly,abnormal tau protein interacts with several mitochondrial proteins,suggesting that it could induce mitochondrial dysfunction.Nevertheless,whether tau-mediated mitochondrial dysfunction occurs indirectly or directly is still unknown.A recent study of our laboratory shows that phosphorylated tau at Ser396/404(known as PHF-1),an epitope commonly related to pathology,accumulates inside mitochondria during normal aging.This accumulation occurs preferentially in synaptic mitochondria,which suggests that it may contribute to the synaptic failure and cognitive impairment seen in aged individuals.Here,we review the main tau modifications promoting mitochondrial dysfunction,and the possible mechanism involved.Also,we discuss the evidence that supports the possibility that phosphorylated tau accumulation in synaptic mitochondria promotes synaptic and cognitive impairment in aging.Finally,we show evidence and argue about the presence of phosphorylated tau PHF-1 inside mitochondria in Alzheimer’s disease,which could be considered as an early event in the neurodegenerative process.Thus,phosphorylated tau PHF-1 inside the mitochondria could be considered such a potential therapeutic target to prevent or attenuate age-related cognitive impairment.