期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Soy Protein Isolate Non-Isocyanates Polyurethanes(NIPU)Wood Adhesives 被引量:5
1
作者 Xinyi Chen Antonio Pizzi +3 位作者 Xuedong Xi Xiaojian Zhou Emmanuel Fredon christine gerardin 《Journal of Renewable Materials》 SCIE EI 2021年第6期1045-1057,共13页
Soy-protein isolate(SPI)was used to prepare non-isocyanate polyurethane(NIPU)thermosetting adhesives for wood panels by reacting it with dimethyl carbonate(DMC)and hexamethylene diamine.Both linear as well as branched... Soy-protein isolate(SPI)was used to prepare non-isocyanate polyurethane(NIPU)thermosetting adhesives for wood panels by reacting it with dimethyl carbonate(DMC)and hexamethylene diamine.Both linear as well as branched oligomers were obtained and identified,indicating how such oligomer structures could further cross-link to form a hardened network.Unusual structures were observed,namely carbamic acid-derived urethane linkages coupled with lactam structures.The curing of the adhesive was followed by thermomechanical analysis(TMA).It appeared to follow a two stages process:First,at a lower temperature(maximum 130℃),the growth of linear oligomers occurred,finally forming a physically entangled network.This appeared to collapse and disentangle,causing a decrease of MOE,as the temperature increases.This appears to be due to the ever more marked Brownian movements of the linear oligomer chains with the increase of the temperature.Second,chemical cross-linking of the chains appeared to ensue,forming a hardened network.This was shown by the thermomechanical analysis(TMA)showing two distinct MOE maxima peaks,one around 130℃ and the other around 220℃,with a very marked MOE decrease between the two.Plywood panels were prepared and bonded with the SPI-NIPU wood adhesive and the results obtained are presented.The adhesive appeared to pass comfortably the requirements for dry strength of relevant standards,showing to be suitable for interior grade plywood panels.It did not pass the requirements for wet tests.However,addition of 15%of glycerol diglycidyl ether improved the wet tests results but still not enough to satisfy the standards requirements. 展开更多
关键词 Bio-based wood adhesives soy protein isolate non-isocyanate polyurethanes(NIPU) wood panels MALDI ToF
下载PDF
Flexible Biofoams Based on Furanics and Fatty Acids Esterified Tannin
2
作者 Elham Azadeh Ummi Hani Abdullah +3 位作者 christine gerardin Antonio Pizzi Philippe gerardin Cesar Segovia 《Journal of Renewable Materials》 EI 2023年第10期3625-3645,共21页
Water repellant,flexible biofoams using tannin esterified with various fatty acid chains,namely lauric,palmitic and oleic acids,by reaction with lauryl chloride,palmitoyl chloride,and oleyl chloride were developed and... Water repellant,flexible biofoams using tannin esterified with various fatty acid chains,namely lauric,palmitic and oleic acids,by reaction with lauryl chloride,palmitoyl chloride,and oleyl chloride were developed and their characteristics compared with the equivalently esterified rigid biofoams.Glycerol,while initially added to control the reaction temperature,was used as a plasticizer yielding flexible biofoams presenting the same water repellant character that the equivalent rigid foams.Acetaldehyde was used as the cross-linking agent instead of formaldehyde,as it showed a better performance with the esterified tannin.The compression results showed a significant decrease of the Modulus of Elasticity(MOE)of the flexible foams in relation to that of the rigid foams,confirming their flexible character.The lauryl-and palmitoyl-esterified biofoams presented similar mechanical properties,while the oleyl-esterified biofoam presented different mechanical and morphological result not really showing the expected flexibility.Both the esterified rigid and flexible tannin-based biofoams showed good water resistance and their sessile drop contact angle analysis as a function of time confirmed this characteristic.Scanning Electron Microscope(SEM)analysis showed the flexible foams to present a higher proportion of closed cells than the rigid foams.Conversely,the cells depth of the flexible foams was lower than that of the rigid foam.As regards their thermal resistance,the flexible foams showed a slight loss of mass compared to the rigid ones without glycerol.Both types of foams presented much lower surface friability of non-esterified rigid foams. 展开更多
关键词 Flexible tannin-furanic foams esterified tannins water repellence TGA SEM compression
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部