GaN-based vertical P-i-N diode with mesa edge terminal structure due to electric field crowding effect, the breakdown voltage of the device is significantly reduced. This work investigates three terminal structures, i...GaN-based vertical P-i-N diode with mesa edge terminal structure due to electric field crowding effect, the breakdown voltage of the device is significantly reduced. This work investigates three terminal structures, including deeply etched, bevel, and stepped-mesas terminal structures, to suppress electric field crowding effects at the device and junction edges. Deeply-etched mesa terminal yields a breakdown voltage of 1205 V, i.e., 89% of the ideal voltage. The bevel-mesa terminal achieves about 89% of the ideal breakdown voltage, while the step-mesa terminal is less effective in mitigating electric field crowding, at about 32% of the ideal voltage. This work can provide an important reference for the design of high-power, high-voltage GaN-based P-i-N power devices, finding a terminal protection structure suitable for GaNPiN diodes to further enhance the breakdown performance of the device and to unleash the full potential of GaN semiconductor materials.展开更多
In recent years,the exploration of seabed has been intensified,but the submarine soils of silt and sand in the Yellow Sea area have not been well investigated so far.In this study,the physical and mechanical propertie...In recent years,the exploration of seabed has been intensified,but the submarine soils of silt and sand in the Yellow Sea area have not been well investigated so far.In this study,the physical and mechanical properties of silt and sand from the Yellow Sea were measured using a direct shear apparatus and their microstructures were observed using a scanning electron microscope.The test results suggest that the shear strength of silt and sand increases linearly with the increase of normal stress.Based on the direct shear test,the scanning electron microscope was used to observe the section surface of sand.It is observed that the section surface becomes rough,with many“V”‐shaped cracks.Many particles appear on the surface of the silt structure and tend to be disintegrated.The X‐ray diffraction experiment reveals that the sand and silt have different compositions.The shear strength of sand is slightly greater than that of silt under high stress,which is related to the shape of soil particles and the mineral composition.These results can be a reference for further study of other soils in the Yellow Sea;meanwhile,they can serve as soil parameters for the stability and durability analyses of offshore infrastructure construction.展开更多
The additive manufacturing(AM)of Ni-based superalloys has attracted extensive interest from both academia and industry due to its unique capabilities to fabricate complex and high-performance components for use in hig...The additive manufacturing(AM)of Ni-based superalloys has attracted extensive interest from both academia and industry due to its unique capabilities to fabricate complex and high-performance components for use in high-end industrial systems.However,the intense temperature gradient induced by the rapid heating and cooling processes of AM can generate high levels of residual stress and metastable chemical and structural states,inevitably leading to severe metallurgical defects in Ni-based superalloys.Cracks are the greatest threat to these materials’integrity as they can rapidly propagate and thereby cause sudden and non-predictable failure.Consequently,there is a need for a deeper understanding of residual stress and cracking mechanisms in additively manufactured Ni-based superalloys and ways to potentially prevent cracking,as this knowledge will enable the wider application of these unique materials.To this end,this paper comprehensively reviews the residual stress and the various mechanisms of crack formation in Ni-based superalloys during AM.In addition,several common methods for inhibiting crack formation are presented to assist the research community to develop methods for the fabrication of crack-free additively manufactured components.展开更多
Owing to its low cost,short process and low energy consumption,semi-solid processing(SSP)of aluminum(Al)and magnesium(Mg)alloys has been considered as a competitive approach to fabricate complicated components with ex...Owing to its low cost,short process and low energy consumption,semi-solid processing(SSP)of aluminum(Al)and magnesium(Mg)alloys has been considered as a competitive approach to fabricate complicated components with excellent performance.Over the past decade,significant progress has been achieved in deeply understanding the SSP process,the microstructure and performance of the fabricated components in China.This paper starts with a retrospective overview of some common slurry preparation methods,followed by presenting the performance and the underlying mechanisms of SSP fabricated alloys.Then,the mainstream opinions on the microstructure evolution and rheological flow behavior of semi-solid slurry are discussed.Subsequently,the general situation and some recent examples of industrial applications of SSP are presented.Finally,special attention is paid to the unresolved issues and the future directions in SSP of Al and Mg alloys in China.展开更多
With great superiorities in energy density,rate capability and structural stability,Na_(3)V_(2)(PO_(4))_(2) F_(3)(NVPF)has attracted much attentions as cathode of sodium ion battery(SIB),but it also faces challenges o...With great superiorities in energy density,rate capability and structural stability,Na_(3)V_(2)(PO_(4))_(2) F_(3)(NVPF)has attracted much attentions as cathode of sodium ion battery(SIB),but it also faces challenges on its poor intrinsic electronic conductivity and the controversial de/sodiation mechanism.Herein,a series of Zr-doped NVPF coated by N-doped carbon layer(~5 nm in thickness,homogenously)materials are fabricated by a sol-gel method,and the optimized heteroatom-doping amounts of Zr and N doping improve intrinsic properties on enlarging lattice distance and enhancing electronic conductivity,respectively.Specifically,among all samples of Na_(3) V_(2-x)Zr_(x)(PO_(4))_(2) F_(3)/NC(NVPF-Zr-x/NC,x=0,0.01,0.02,0.05,and 0.1),the optimized electrode of NVPF-Zr-0.02/NC delivers high reversible capacities(119.2 mAh g^(-1) at0.5 C),superior rate capability(98.1 mA h g^(-1) at 20 C)and excellent cycling performance.The structural evolution of NVPF-Zr-0.02/NC electrode,in-situ monitored by X-ray diffractometer,follows a step-wise Na-extraction/intercalation mechanism with reversible multi-phase changes,not just a solid-solutionreaction one.Full cells of NVPF-Zr-0.02/NC//hard carbon demonstrate high capacity(99.8 mA h g^(-1) at 0.5 C),high out-put voltage(3.5 V)and good cycling stability.This work is favorable to accelerate the development of high-performance cathode materials and explore possible redox reaction mechanisms of SIBs.展开更多
BACKGROUND Anti-glomerular basement membrane(GBM)disease is a rare autoimmune disease manifesting as acute progressive nephritis syndrome with or without varying degrees of pulmonary hemorrhage.Anti-GBM disease coexis...BACKGROUND Anti-glomerular basement membrane(GBM)disease is a rare autoimmune disease manifesting as acute progressive nephritis syndrome with or without varying degrees of pulmonary hemorrhage.Anti-GBM disease coexisting with Immunoglobulin A(IgA)nephropathy is rarer and has different clinical manifestations and prognoses than simple anti-GBM disease.We describe a case of coexistence of these two diseases.CASE SUMMARY A 49-year-old man with hematuria and proteinuria accompanied by a slight elevation of serum creatinine was admitted to our hospital.The pathological results of renal biopsy and the elevated serum anti-GBM antibody titer supported a diagnosis of anti-GBM disease combined with IgA nephropathy.After treatment with corticosteroids and cyclophosphamide,the patient's serum creatinine was relatively stable,and the hematuria and proteinuria moderately improved in the subsequent six months.CONCLUSION Anti-GBM disease coexisting with IgA nephropathy is rare.The clinical manifestations and prognosis are better than those of simple anti-GBM disease.In this case,the patient's condition was improved and his renal function remained relatively stable with corticosteroid and cyclophosphamide treatment.New detection methods to identify whether the crescents in this case were derived from anti-GBM disease or IgA nephropathy are worthy of further exploration.展开更多
Bedding-parallel fibrous veins occurring as lenticular to flattened intercalations were found in the organic-rich marlstone/calcareous shale of the upper Lower Permian Chihsia Formation in western Hubei Province, Sout...Bedding-parallel fibrous veins occurring as lenticular to flattened intercalations were found in the organic-rich marlstone/calcareous shale of the upper Lower Permian Chihsia Formation in western Hubei Province, South China. They dominantly consist of fibrous calcite crystals with smooth and tight boundaries, forming fence- like inward, syntaxial growth clusters toward the vein center along which a median suture line generally occurs. Petrographic evidence indicates that these veins may form at relatively shallow burial depth, where fluid overpres- sures would have incrementally created the bed-parallel vein space, resulting in displacive growth of fibrous calcite. On the other hand, the C, O and S isotopic data across the vein reveal slightly depleted δ13Ccarb values (-3.32 ‰ to +0.19‰ VPDB) and moderately depleted δSOcarb values (--9.6 ‰ to --7.3 ‰ VPDB) with respect to those of coeval seawaters and slightly heavier δ34Spyrite values (--7.88 ‰ CDT) with respect to those of ambient rocks. Stable isotope evidence consistently suggests significant contribution of bacterial sulfate reduction (BSR) to the formation of the fibrous calcite cements in the vein. The BSR could have been intensive with the availabilities of residual sulfate and abundant organic matters in the Chihsia sediments during shallow burial, increasing the alkalinity of pore waters and further promoting carbonate precipitation. Thus, the bedding-parallel fibrous calcite vein in the upper Lower Permian Chihsia Formation is an important time-specific petrographic capsule, providing clues for understanding the diagenetic process in organic- rich sediments.展开更多
The Ediacaran-Cambrian(E-C) succession in South China records remarkable oceanic,biological and geochemical variations,but it was not well defined geochronologically,which hinders the interpretation of the spatio-temp...The Ediacaran-Cambrian(E-C) succession in South China records remarkable oceanic,biological and geochemical variations,but it was not well defined geochronologically,which hinders the interpretation of the spatio-temporal seawater chemical architecture during the time E-C interval.This study presents two Re-Os isochron ages of 520.2±6.1 and 561.7±8.5 Ma for the barite-rich black shales from the top Liuchapo and Doushantuo formations respectively in Tianzhu County,Guizhou Province.In combination with existing age data,the two new Re-Os isochron ages suggest that the Liuchapo Formation was deposited between 550 and 520 Ma.Moreover,like the polymetallic Ni-MoPGE layers of shelf margin(or platform) facies and V-rich horizons of transitional(or shelf slope) to deep-water facies,the barite deposits were likely formed due to differential mineralization.The timing offset likely resulted from differential elemental concentration related to certain local factors(i.e.,hydrothermal fluids,seawater redox and biological activity).The isochron-derived initial ^(187)Os/^(188)Os ratios of the top Liuchapo Formation(0.902 ± 0.048) and the Doushantuo Formation(0.740 ± 0.042) fall within the range of continental weathering flux(1.54) and oceanic crust(0.126),implying the involvement of marine hydrothermal fluids.Moreover,their difference of initial ^(187)Os/^(188)Os ratios may reflect variations of continental weathering intensity and uplift magnitude.展开更多
In this paper,an effective method is proposed to generate specific periodical surface structures.A 532 nm linearly polarized laser is used to irradiate the silicon with pulse duration of 10 ns and repetition frequency...In this paper,an effective method is proposed to generate specific periodical surface structures.A 532 nm linearly polarized laser is used to irradiate the silicon with pulse duration of 10 ns and repetition frequency of 10 Hz.Laser-induced periodic surface structures(LIPSSs) are observed when the fluence is 121 mJ/cm;and the number of pulses is 1000.The threshold of fluence for generating LIPSS gradually increases with the decrease of the number of pulses.In addition,the laser incident angle has a notable effect on the period of LIPSS,which varies from 430 nm to 1578 nm,as the incident angle ranges from10° to 60° correspondingly.Besides,the reflectivity is reduced significantly on silicon with LIPSS.展开更多
Vacuum ultraviolet(VUV)lasers have demonstrated great potential as the light source for various spectroscopies,which,if they can be focused into a small beam spot,will not only allow investigation of mesoscopic materi...Vacuum ultraviolet(VUV)lasers have demonstrated great potential as the light source for various spectroscopies,which,if they can be focused into a small beam spot,will not only allow investigation of mesoscopic materials and structures but also find application in the manufacture of nano-objects with excellent precision.In this work,we report the construction of a 177 nm VUV laser that can achieve a record-small(〜0.76 μm)focal spot at a long focal length(~45 mm)by using a flat lens without spherical aberration.The size of the beam spot of this VUV laser was tested using a metal grating and exfoliated graphene flakes,and we demonstrated its application in a fluorescence spectroscopy study on pure and Tm3+-doped NaYF4 microcrystals,revealing a new emission band that cannot be observed in the traditional up-conversion process.In addition,this laser system would be an ideal light source for spatially and angleresolved photoemission spectroscopy.展开更多
Inconel 738 LC samples were fabricated using laser powder bed fusion under continuous-wave and pulsed-wave modes.Microstructure,surface quality and mechanical properties were compared to evaluate the printing quality ...Inconel 738 LC samples were fabricated using laser powder bed fusion under continuous-wave and pulsed-wave modes.Microstructure,surface quality and mechanical properties were compared to evaluate the printing quality between these 2 laser beam modes.The results show that the application of pulsed wave could effectively eliminate cracking in the as-fabricated sample,despite 0.046%porosity generated.Further microstructure analysis revealed that the refinement of grains by the pulsed-wave laser beam was the main contributor in eliminating the cracks.And this refinement was ascribed to the higher cooling rate under the discontinuous radiation of laser beam proofed by the numerical simulation.And the pore formation was related to Rayleigh instability and residual bubbles in the sample under the pulsed-wave mode,while pores were less detrimental to the mechanical properties than cracks.Therefore,the part under the pulsed-wave mode exhibited superior mechanical performance compared to that under the continuous-wave mode.展开更多
Medical cotton dressing is cheap and widely used in diversified fields,but in the application of promoting wound healing,the continuous research of multifunctional medical cotton dressing is still of great significanc...Medical cotton dressing is cheap and widely used in diversified fields,but in the application of promoting wound healing,the continuous research of multifunctional medical cotton dressing is still of great significance.Here,we developed a fresh type of antibacterial cotton dressing through a succinct strategy based on chemically anchoring polyhexamethylene biguanide(PHMB).Intriguingly,after PHMB modification,the cotton dressing exhibited outstanding antibacterial performance which could maintain>99.99%antibacterial rate after several treatments,including washing 50 times,repeated use 10 times,UV irradiation for 7 days,cationic dyes dying,and conditioned under 90℃water bath for 2 h.In addition,the water contact angle of cotton dressing increased dramatically from 0°to 111°,which could facilitate bacterial adhesion,thus further enhance the antibacterial efficiency,and easily remove the bacterial debris.Apart from that,the developed cotton dressing showed good cytocompatibility,promoted blood clotting and expression of platelets,and promoted the wound healing process in the infection intervened skin wound model.Taken together,this antibacterial cotton dressing with desirable blood clotting,sustained protection against bacterial infection and bacterial removal features shows the potential to be a candidate for infected skin wound healing.展开更多
This study provides δ^13C profiles from a lower-slope(Well ZK102)to basin(Bahuang Section)environment to better understand the temporal and spatial variability in δ^13Ccarb-δ^13Corg of the Yangtze Block during the ...This study provides δ^13C profiles from a lower-slope(Well ZK102)to basin(Bahuang Section)environment to better understand the temporal and spatial variability in δ^13Ccarb-δ^13Corg of the Yangtze Block during the Late Ediacaran.Our new δ^13C profiles together with the reported data suggest that the Upper Ediacaran successions from different depositional environments are generally bounded by negative δ^13Ccarb and/or δ^13Corg excursions in the underlying and overlying strata.Moreover,the Upper Ediacaran δ^13Ccarb profiles generally can be subdivided into two positive excursions and an interjacent negative excursion,whereas the paired δ^13Corg profiles from different depositional environments have individual variation trends.On the other hand,these data show a large surface-to-deep waterδ^13C gradient(~5‰variation in δ^13Ccarb,>10‰variation in δ^13Corg)which can be reasonably explained by the heterogeneity of the biological activities in the redox-stratified water column.Furthermore,the decoupled δ^13Ccarb-δ^13Corg pattern with large δ^13Corg perturbations at the lower slope precluded the existence of a large dissolved organic carbon reservoir at the Yangtze Block during the Late Ediacaran.Thus,the high δ^13Ccarb values in the Upper Ediacaran succession could be balanced by large amounts of buried organic carbon likely associated with high productivity.展开更多
文摘GaN-based vertical P-i-N diode with mesa edge terminal structure due to electric field crowding effect, the breakdown voltage of the device is significantly reduced. This work investigates three terminal structures, including deeply etched, bevel, and stepped-mesas terminal structures, to suppress electric field crowding effects at the device and junction edges. Deeply-etched mesa terminal yields a breakdown voltage of 1205 V, i.e., 89% of the ideal voltage. The bevel-mesa terminal achieves about 89% of the ideal breakdown voltage, while the step-mesa terminal is less effective in mitigating electric field crowding, at about 32% of the ideal voltage. This work can provide an important reference for the design of high-power, high-voltage GaN-based P-i-N power devices, finding a terminal protection structure suitable for GaNPiN diodes to further enhance the breakdown performance of the device and to unleash the full potential of GaN semiconductor materials.
基金Natural Science Foundation of Jiangsu Province,Grant/Award Number:BK20210527National Natural Science Foundation of China,Grant/Award Number:42107158Training Program for Innovation and Entrepreneurship,China University of Mining and Technology。
文摘In recent years,the exploration of seabed has been intensified,but the submarine soils of silt and sand in the Yellow Sea area have not been well investigated so far.In this study,the physical and mechanical properties of silt and sand from the Yellow Sea were measured using a direct shear apparatus and their microstructures were observed using a scanning electron microscope.The test results suggest that the shear strength of silt and sand increases linearly with the increase of normal stress.Based on the direct shear test,the scanning electron microscope was used to observe the section surface of sand.It is observed that the section surface becomes rough,with many“V”‐shaped cracks.Many particles appear on the surface of the silt structure and tend to be disintegrated.The X‐ray diffraction experiment reveals that the sand and silt have different compositions.The shear strength of sand is slightly greater than that of silt under high stress,which is related to the shape of soil particles and the mineral composition.These results can be a reference for further study of other soils in the Yellow Sea;meanwhile,they can serve as soil parameters for the stability and durability analyses of offshore infrastructure construction.
基金This work was supported by Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone Shenzhen Park Project:HZQB-KCZYB-2020030the National Natural Science Foundation of China(No.91860131and No.52074157)+2 种基金Guangdong Provincial Department of Science and Technology,Key-Area Research and Development Program of Guangdong Province(No.2020B090923002)the National Key Research and Development Program of China(No.2017YFB0702901)the Shenzhen Science and Technology Innovation Commission(No.JCYJ20170817111811303,No.KQTD20170328154443162and No.ZDSYS201703031748354).
文摘The additive manufacturing(AM)of Ni-based superalloys has attracted extensive interest from both academia and industry due to its unique capabilities to fabricate complex and high-performance components for use in high-end industrial systems.However,the intense temperature gradient induced by the rapid heating and cooling processes of AM can generate high levels of residual stress and metastable chemical and structural states,inevitably leading to severe metallurgical defects in Ni-based superalloys.Cracks are the greatest threat to these materials’integrity as they can rapidly propagate and thereby cause sudden and non-predictable failure.Consequently,there is a need for a deeper understanding of residual stress and cracking mechanisms in additively manufactured Ni-based superalloys and ways to potentially prevent cracking,as this knowledge will enable the wider application of these unique materials.To this end,this paper comprehensively reviews the residual stress and the various mechanisms of crack formation in Ni-based superalloys during AM.In addition,several common methods for inhibiting crack formation are presented to assist the research community to develop methods for the fabrication of crack-free additively manufactured components.
基金financial supports from the Shenzhen Science and Technology Innovation Commission, China (Nos. KQTD20170328154443162, JCYJ20180305123432756)。
文摘Owing to its low cost,short process and low energy consumption,semi-solid processing(SSP)of aluminum(Al)and magnesium(Mg)alloys has been considered as a competitive approach to fabricate complicated components with excellent performance.Over the past decade,significant progress has been achieved in deeply understanding the SSP process,the microstructure and performance of the fabricated components in China.This paper starts with a retrospective overview of some common slurry preparation methods,followed by presenting the performance and the underlying mechanisms of SSP fabricated alloys.Then,the mainstream opinions on the microstructure evolution and rheological flow behavior of semi-solid slurry are discussed.Subsequently,the general situation and some recent examples of industrial applications of SSP are presented.Finally,special attention is paid to the unresolved issues and the future directions in SSP of Al and Mg alloys in China.
基金the National Natural Science Foundation of China(21975154)the Shanghai Municipal Education Commission(Innovation Program(2019-01-07-00-09E00021)+2 种基金Innovative Research Team of High-level Local Universities in Shanghaisupported by The Program for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher LearningShanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power。
文摘With great superiorities in energy density,rate capability and structural stability,Na_(3)V_(2)(PO_(4))_(2) F_(3)(NVPF)has attracted much attentions as cathode of sodium ion battery(SIB),but it also faces challenges on its poor intrinsic electronic conductivity and the controversial de/sodiation mechanism.Herein,a series of Zr-doped NVPF coated by N-doped carbon layer(~5 nm in thickness,homogenously)materials are fabricated by a sol-gel method,and the optimized heteroatom-doping amounts of Zr and N doping improve intrinsic properties on enlarging lattice distance and enhancing electronic conductivity,respectively.Specifically,among all samples of Na_(3) V_(2-x)Zr_(x)(PO_(4))_(2) F_(3)/NC(NVPF-Zr-x/NC,x=0,0.01,0.02,0.05,and 0.1),the optimized electrode of NVPF-Zr-0.02/NC delivers high reversible capacities(119.2 mAh g^(-1) at0.5 C),superior rate capability(98.1 mA h g^(-1) at 20 C)and excellent cycling performance.The structural evolution of NVPF-Zr-0.02/NC electrode,in-situ monitored by X-ray diffractometer,follows a step-wise Na-extraction/intercalation mechanism with reversible multi-phase changes,not just a solid-solutionreaction one.Full cells of NVPF-Zr-0.02/NC//hard carbon demonstrate high capacity(99.8 mA h g^(-1) at 0.5 C),high out-put voltage(3.5 V)and good cycling stability.This work is favorable to accelerate the development of high-performance cathode materials and explore possible redox reaction mechanisms of SIBs.
文摘BACKGROUND Anti-glomerular basement membrane(GBM)disease is a rare autoimmune disease manifesting as acute progressive nephritis syndrome with or without varying degrees of pulmonary hemorrhage.Anti-GBM disease coexisting with Immunoglobulin A(IgA)nephropathy is rarer and has different clinical manifestations and prognoses than simple anti-GBM disease.We describe a case of coexistence of these two diseases.CASE SUMMARY A 49-year-old man with hematuria and proteinuria accompanied by a slight elevation of serum creatinine was admitted to our hospital.The pathological results of renal biopsy and the elevated serum anti-GBM antibody titer supported a diagnosis of anti-GBM disease combined with IgA nephropathy.After treatment with corticosteroids and cyclophosphamide,the patient's serum creatinine was relatively stable,and the hematuria and proteinuria moderately improved in the subsequent six months.CONCLUSION Anti-GBM disease coexisting with IgA nephropathy is rare.The clinical manifestations and prognosis are better than those of simple anti-GBM disease.In this case,the patient's condition was improved and his renal function remained relatively stable with corticosteroid and cyclophosphamide treatment.New detection methods to identify whether the crescents in this case were derived from anti-GBM disease or IgA nephropathy are worthy of further exploration.
基金supported by the National Natural Science Foundation of China(40839907,41302021 and41203030)
文摘Bedding-parallel fibrous veins occurring as lenticular to flattened intercalations were found in the organic-rich marlstone/calcareous shale of the upper Lower Permian Chihsia Formation in western Hubei Province, South China. They dominantly consist of fibrous calcite crystals with smooth and tight boundaries, forming fence- like inward, syntaxial growth clusters toward the vein center along which a median suture line generally occurs. Petrographic evidence indicates that these veins may form at relatively shallow burial depth, where fluid overpres- sures would have incrementally created the bed-parallel vein space, resulting in displacive growth of fibrous calcite. On the other hand, the C, O and S isotopic data across the vein reveal slightly depleted δ13Ccarb values (-3.32 ‰ to +0.19‰ VPDB) and moderately depleted δSOcarb values (--9.6 ‰ to --7.3 ‰ VPDB) with respect to those of coeval seawaters and slightly heavier δ34Spyrite values (--7.88 ‰ CDT) with respect to those of ambient rocks. Stable isotope evidence consistently suggests significant contribution of bacterial sulfate reduction (BSR) to the formation of the fibrous calcite cements in the vein. The BSR could have been intensive with the availabilities of residual sulfate and abundant organic matters in the Chihsia sediments during shallow burial, increasing the alkalinity of pore waters and further promoting carbonate precipitation. Thus, the bedding-parallel fibrous calcite vein in the upper Lower Permian Chihsia Formation is an important time-specific petrographic capsule, providing clues for understanding the diagenetic process in organic- rich sediments.
基金jointly supported by the National Natural Science Foundation of China(Nos.41763006,42063009,U1812402)the Talent Base Project of Guizhou Province(No.RCJD2018-21)。
文摘The Ediacaran-Cambrian(E-C) succession in South China records remarkable oceanic,biological and geochemical variations,but it was not well defined geochronologically,which hinders the interpretation of the spatio-temporal seawater chemical architecture during the time E-C interval.This study presents two Re-Os isochron ages of 520.2±6.1 and 561.7±8.5 Ma for the barite-rich black shales from the top Liuchapo and Doushantuo formations respectively in Tianzhu County,Guizhou Province.In combination with existing age data,the two new Re-Os isochron ages suggest that the Liuchapo Formation was deposited between 550 and 520 Ma.Moreover,like the polymetallic Ni-MoPGE layers of shelf margin(or platform) facies and V-rich horizons of transitional(or shelf slope) to deep-water facies,the barite deposits were likely formed due to differential mineralization.The timing offset likely resulted from differential elemental concentration related to certain local factors(i.e.,hydrothermal fluids,seawater redox and biological activity).The isochron-derived initial ^(187)Os/^(188)Os ratios of the top Liuchapo Formation(0.902 ± 0.048) and the Doushantuo Formation(0.740 ± 0.042) fall within the range of continental weathering flux(1.54) and oceanic crust(0.126),implying the involvement of marine hydrothermal fluids.Moreover,their difference of initial ^(187)Os/^(188)Os ratios may reflect variations of continental weathering intensity and uplift magnitude.
基金supported by the National Natural Science Foundation of China (No. 61805279)
文摘In this paper,an effective method is proposed to generate specific periodical surface structures.A 532 nm linearly polarized laser is used to irradiate the silicon with pulse duration of 10 ns and repetition frequency of 10 Hz.Laser-induced periodic surface structures(LIPSSs) are observed when the fluence is 121 mJ/cm;and the number of pulses is 1000.The threshold of fluence for generating LIPSS gradually increases with the decrease of the number of pulses.In addition,the laser incident angle has a notable effect on the period of LIPSS,which varies from 430 nm to 1578 nm,as the incident angle ranges from10° to 60° correspondingly.Besides,the reflectivity is reduced significantly on silicon with LIPSS.
基金C.Z.,L.Y.,and K.H.acknowledge support from the National Natural Science Foundation of China(grants 11774427,61875181,61705085,11774190,and 11427903)Y.C.acknowledges support from the Engineering and Physical Sciences Research Council Platform(grant EP/M020517/1)+1 种基金K.H.thanks USTC Research Funds of the Double Rrst-Class Initiative(grant YD2030002003)"the Fundamental Research Funds for the Central Universities"in China,the CAS Pioneer Hundred Talents Program,and the support from the University of Science and Technology of China’s Centre for Micro and Nanoscale Research and Fabrication.
文摘Vacuum ultraviolet(VUV)lasers have demonstrated great potential as the light source for various spectroscopies,which,if they can be focused into a small beam spot,will not only allow investigation of mesoscopic materials and structures but also find application in the manufacture of nano-objects with excellent precision.In this work,we report the construction of a 177 nm VUV laser that can achieve a record-small(〜0.76 μm)focal spot at a long focal length(~45 mm)by using a flat lens without spherical aberration.The size of the beam spot of this VUV laser was tested using a metal grating and exfoliated graphene flakes,and we demonstrated its application in a fluorescence spectroscopy study on pure and Tm3+-doped NaYF4 microcrystals,revealing a new emission band that cannot be observed in the traditional up-conversion process.In addition,this laser system would be an ideal light source for spatially and angleresolved photoemission spectroscopy.
基金financially supported by National Natural Science Foundation of China(No.91860131 and No.52074157)National Key Research and Development Program of China(No.2017YFB0702901)+1 种基金Shenzhen Science and Technology Innovation Commission under the Projects(No.JCYJ20170817111811303,No.KQTD20170328154443162 and ZDSYS201703031748354)joint Ph.D.program between SUSTech and UoB(No.FEFE/GAS1792)。
文摘Inconel 738 LC samples were fabricated using laser powder bed fusion under continuous-wave and pulsed-wave modes.Microstructure,surface quality and mechanical properties were compared to evaluate the printing quality between these 2 laser beam modes.The results show that the application of pulsed wave could effectively eliminate cracking in the as-fabricated sample,despite 0.046%porosity generated.Further microstructure analysis revealed that the refinement of grains by the pulsed-wave laser beam was the main contributor in eliminating the cracks.And this refinement was ascribed to the higher cooling rate under the discontinuous radiation of laser beam proofed by the numerical simulation.And the pore formation was related to Rayleigh instability and residual bubbles in the sample under the pulsed-wave mode,while pores were less detrimental to the mechanical properties than cracks.Therefore,the part under the pulsed-wave mode exhibited superior mechanical performance compared to that under the continuous-wave mode.
基金the National Natural Science Foundation of China(Nos.51803128,52073186,21802097)Fundamental Research Funds for the Central Universities(No.20826041D4160)+2 种基金Sichuan Science and Technology Programs(Nos.2020KJT0031-2020ZHCG0051,2020KJT0061-2020ZHFP0148)State Key Laboratory of Polymer Materials Engineering(No.sklpme20213–01)Funding of Engineering Characteristic Team,Sichuan University(No.2020SCUNG122)。
文摘Medical cotton dressing is cheap and widely used in diversified fields,but in the application of promoting wound healing,the continuous research of multifunctional medical cotton dressing is still of great significance.Here,we developed a fresh type of antibacterial cotton dressing through a succinct strategy based on chemically anchoring polyhexamethylene biguanide(PHMB).Intriguingly,after PHMB modification,the cotton dressing exhibited outstanding antibacterial performance which could maintain>99.99%antibacterial rate after several treatments,including washing 50 times,repeated use 10 times,UV irradiation for 7 days,cationic dyes dying,and conditioned under 90℃water bath for 2 h.In addition,the water contact angle of cotton dressing increased dramatically from 0°to 111°,which could facilitate bacterial adhesion,thus further enhance the antibacterial efficiency,and easily remove the bacterial debris.Apart from that,the developed cotton dressing showed good cytocompatibility,promoted blood clotting and expression of platelets,and promoted the wound healing process in the infection intervened skin wound model.Taken together,this antibacterial cotton dressing with desirable blood clotting,sustained protection against bacterial infection and bacterial removal features shows the potential to be a candidate for infected skin wound healing.
基金This work was supported by the National Natural Science Foundation of China(Nos.41472089,U1663209)the Open Research Fund Program of Hunan Provincial Key Laboratory of Shale Gas Resource Utilization,Hunan University of Science and Technology.
文摘This study provides δ^13C profiles from a lower-slope(Well ZK102)to basin(Bahuang Section)environment to better understand the temporal and spatial variability in δ^13Ccarb-δ^13Corg of the Yangtze Block during the Late Ediacaran.Our new δ^13C profiles together with the reported data suggest that the Upper Ediacaran successions from different depositional environments are generally bounded by negative δ^13Ccarb and/or δ^13Corg excursions in the underlying and overlying strata.Moreover,the Upper Ediacaran δ^13Ccarb profiles generally can be subdivided into two positive excursions and an interjacent negative excursion,whereas the paired δ^13Corg profiles from different depositional environments have individual variation trends.On the other hand,these data show a large surface-to-deep waterδ^13C gradient(~5‰variation in δ^13Ccarb,>10‰variation in δ^13Corg)which can be reasonably explained by the heterogeneity of the biological activities in the redox-stratified water column.Furthermore,the decoupled δ^13Ccarb-δ^13Corg pattern with large δ^13Corg perturbations at the lower slope precluded the existence of a large dissolved organic carbon reservoir at the Yangtze Block during the Late Ediacaran.Thus,the high δ^13Ccarb values in the Upper Ediacaran succession could be balanced by large amounts of buried organic carbon likely associated with high productivity.