Oil-gas two phase wax deposition is a fairly common and open-ended question in flow assurance of multiphase transportation pipelines.This paper investigated the two main aspects of oil-gas two phase wax deposition lay...Oil-gas two phase wax deposition is a fairly common and open-ended question in flow assurance of multiphase transportation pipelines.This paper investigated the two main aspects of oil-gas two phase wax deposition layer:apparent thickness and crystal structure characteristics.A typical highly paraffinic oil in Bohai Sea,China,was used as the experimental material to investigate the wax deposition thickness in oil-gas two phase under the influence of different oil temperatures,superficial gas/liquid phase velocities and gas-oil ratios by using multiphase flow loop experimental device.Just as in the classical theory of wax molecular diffusion,it showed that wax deposition thickness of oil-gas two phase increased with increasing oil temperature.Analysis of the impact of different superficial phase velocities found that the actual liquid flow heat transfer and shear stripping was the gas phase dominant mechanisms determining wax deposit thickness.In addition,the crystal structure of the wax deposition layer was characterized with the help of small-angle X-ray scattering(SAXS)for different circumferential positions,flow rates and gas-oil ratios.The bottom deposition layer had a complex crystal structure and high hardness,which were subject to change over flow rate variations.Furthermore,the SAXS results provided evidence that the indirect effect of the actual liquid velocity modified by the gas phase was the main mechanism.Our study of the effect of gas phase on the wax deposition of oil-gas two phase will help shed light onto the mechanism by which this important process occurs.Our findings address a very urgent need in the field of wax deposition of highly paraffinic oil to understand the flow security of oilgas two phase that occurs easily in multiphase field pipelines.展开更多
Yield stress,as the key parameter to characterize the network strength of waxy oil,is important to the petroleum pipeline safety.Reducing the yield stress of waxy oil is of great significance for flow assurance.In thi...Yield stress,as the key parameter to characterize the network strength of waxy oil,is important to the petroleum pipeline safety.Reducing the yield stress of waxy oil is of great significance for flow assurance.In this study,the effect of alternating magnetic field(intensity,frequency)on the yield stress of a waxy model oil with nanocomposite pour point depressant(NPPD)is systematically investigated.An optimum magnetic field intensity and frequency is found for the reduction in yield stress.When adding with NPPD,the heterogeneous nucleation of NPPD contributes to the reduction in yield stress for waxy model oil.Interestingly,the magnetic field is helpful for the modification of yield stress at a lower frequency and intensity before the optimal value;however,the modification is found to be weakened when the magnetic field is further increased after the optimal value.Possible explanation is proposed that the aggregation morphology of wax crystal would be altered and results in the release of wrapped oil phase from the network structure under the magnetic field.展开更多
The research on the multiphase flow characteristics of hydrate slurry is the key to implementing the risk prevention and control technology of hydrate slurry in deep-water oil and gas mixed transportation system.This ...The research on the multiphase flow characteristics of hydrate slurry is the key to implementing the risk prevention and control technology of hydrate slurry in deep-water oil and gas mixed transportation system.This paper established a geometric model based on the high-pressure hydrate slurry experimental loop.The model was used to carry out simulation research on the flow characteristics of gas-liquid-solid three-phase flow.The specific research is as follows:Firstly,the effects of factors such as slurry flow velocity,hydrate particle density,hydrate particle size,and hydrate volume fraction on the stratified smooth flow were specifically studied.Orthogonal test obtained particle size has the most influence on the particle concentration distribution.The slurry flow velocity is gradually increased based on stratified smooth flow.Various flow patterns were observed and their characteristics were analyzed.Secondly,increasing the slurry velocity to 2 m/s could achieve the slurry flow pattern of partial hydrate in the pipeline transition from stratified smooth flow to wavy flow.When the flow rate increases to 3 m/s,a violent wave forms throughout the entire loop.Based on wave flow,as the velocity increased to 4 m/s,and the flow pattern changed to slug flow.When the particle concentration was below 10%,the increase of the concentration would aggravate the slug flow trend;if the particle concentration was above 10%,the increase of the concentration would weaken the slug flow trend,the increase of particle density and liquid viscosity would weaken the tendency of slug flow.The relationship between the pressure drop gradients of several different flow patterns is:slug flow>wave flow>stratified smooth flow.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52274061&52004039&51974037)China Postdoctoral Science Foundation(Grant No.2023T160717&2021M693908)+2 种基金CNPC Innovation Found(Grant No.2022DQ02-0501),Changzhou Applied Basic Research Program(Grant No.CJ20230030)The major project of universities affiliated with Jiangsu Province basic science(natural science)research(Grant No.21KJA440001)Jiangsu Qinglan Project,Changzhou Longcheng Talent Plan-Youth Science and Technology Talent Recruitment Project。
文摘Oil-gas two phase wax deposition is a fairly common and open-ended question in flow assurance of multiphase transportation pipelines.This paper investigated the two main aspects of oil-gas two phase wax deposition layer:apparent thickness and crystal structure characteristics.A typical highly paraffinic oil in Bohai Sea,China,was used as the experimental material to investigate the wax deposition thickness in oil-gas two phase under the influence of different oil temperatures,superficial gas/liquid phase velocities and gas-oil ratios by using multiphase flow loop experimental device.Just as in the classical theory of wax molecular diffusion,it showed that wax deposition thickness of oil-gas two phase increased with increasing oil temperature.Analysis of the impact of different superficial phase velocities found that the actual liquid flow heat transfer and shear stripping was the gas phase dominant mechanisms determining wax deposit thickness.In addition,the crystal structure of the wax deposition layer was characterized with the help of small-angle X-ray scattering(SAXS)for different circumferential positions,flow rates and gas-oil ratios.The bottom deposition layer had a complex crystal structure and high hardness,which were subject to change over flow rate variations.Furthermore,the SAXS results provided evidence that the indirect effect of the actual liquid velocity modified by the gas phase was the main mechanism.Our study of the effect of gas phase on the wax deposition of oil-gas two phase will help shed light onto the mechanism by which this important process occurs.Our findings address a very urgent need in the field of wax deposition of highly paraffinic oil to understand the flow security of oilgas two phase that occurs easily in multiphase field pipelines.
基金the National Natural Science Foundation of China(51774303,51422406,51534007)the National Science&Technology Specific Project(2016ZX05028-004-001)+1 种基金111 Project(B18054)Science Foundation of China University of Petroleum,Beijing(C201602)for providing support for this work
文摘Yield stress,as the key parameter to characterize the network strength of waxy oil,is important to the petroleum pipeline safety.Reducing the yield stress of waxy oil is of great significance for flow assurance.In this study,the effect of alternating magnetic field(intensity,frequency)on the yield stress of a waxy model oil with nanocomposite pour point depressant(NPPD)is systematically investigated.An optimum magnetic field intensity and frequency is found for the reduction in yield stress.When adding with NPPD,the heterogeneous nucleation of NPPD contributes to the reduction in yield stress for waxy model oil.Interestingly,the magnetic field is helpful for the modification of yield stress at a lower frequency and intensity before the optimal value;however,the modification is found to be weakened when the magnetic field is further increased after the optimal value.Possible explanation is proposed that the aggregation morphology of wax crystal would be altered and results in the release of wrapped oil phase from the network structure under the magnetic field.
基金supported by the National Natural Science Foundation of China(Grant No.52274061&52004039&51974037)China Postdoctoral Science Foundation(Grant No.2023T160717&2021M693908)+1 种基金The major project of universities affiliated to Jiangsu Province basic science(natural science)research(Grant No.21KJA440001)Jiangsu Qinglan Project,Changzhou Longcheng Talent Plan-Youth Science and Technology Talent Recruitment Project.
文摘The research on the multiphase flow characteristics of hydrate slurry is the key to implementing the risk prevention and control technology of hydrate slurry in deep-water oil and gas mixed transportation system.This paper established a geometric model based on the high-pressure hydrate slurry experimental loop.The model was used to carry out simulation research on the flow characteristics of gas-liquid-solid three-phase flow.The specific research is as follows:Firstly,the effects of factors such as slurry flow velocity,hydrate particle density,hydrate particle size,and hydrate volume fraction on the stratified smooth flow were specifically studied.Orthogonal test obtained particle size has the most influence on the particle concentration distribution.The slurry flow velocity is gradually increased based on stratified smooth flow.Various flow patterns were observed and their characteristics were analyzed.Secondly,increasing the slurry velocity to 2 m/s could achieve the slurry flow pattern of partial hydrate in the pipeline transition from stratified smooth flow to wavy flow.When the flow rate increases to 3 m/s,a violent wave forms throughout the entire loop.Based on wave flow,as the velocity increased to 4 m/s,and the flow pattern changed to slug flow.When the particle concentration was below 10%,the increase of the concentration would aggravate the slug flow trend;if the particle concentration was above 10%,the increase of the concentration would weaken the slug flow trend,the increase of particle density and liquid viscosity would weaken the tendency of slug flow.The relationship between the pressure drop gradients of several different flow patterns is:slug flow>wave flow>stratified smooth flow.