Ferroptosis is a nonapoptotic form of cell death and differs considerably from the well-known forms of cell death in terms of cell morphology,genetics,and biochemistry.The three primary pathways for cell ferroptosis a...Ferroptosis is a nonapoptotic form of cell death and differs considerably from the well-known forms of cell death in terms of cell morphology,genetics,and biochemistry.The three primary pathways for cell ferroptosis are system Xc^(-)/glutathione peroxidase 4(GPX4),lipid metabolism,and ferric metabolism.Since the discovery of ferroptosis,mounting evidence has revealed its critical regulatory role in several diseases,especially as a novel potential target for cancer therapy,thereby attracting increasing attention in the fields of tumor biology and anti-tumor therapy.Accordingly,broad prospects exist for identifying ferroptosis as a potential therapeutic target.In this review,we aimed to systematically summarize the activation and defense mechanisms of ferroptosis,highlight the therapeutic targets,and discuss the design of nanomedicines for ferroptosis regulation.In addition,we opted to present the advantages and disadvantages of current ferroptosis research and provide an optimistic vision of future directions in related fields.Overall,we aim to provide new ideas for further ferroptosis research and inspire new strategies for disease diagnosis and treatment.展开更多
Background:Diffusion cell test is one of the most commonly used in vitro model to detect the percutaneous absorption of cosmetic ingredients.Although PRC State Administration of Quality Supervision and Quarantine has ...Background:Diffusion cell test is one of the most commonly used in vitro model to detect the percutaneous absorption of cosmetic ingredients.Although PRC State Administration of Quality Supervision and Quarantine has issued the guideline for the in vitro test method for the percutaneous absorption of drug molecules,there is still a lack of guideline for the percutaneous absorption test of cosmetic components.Objective:In order to improve the standardized level and make the in vitro percutaneous absorption test of cosmetic ingredients more comparable,based on the international and domestic experience,Transdermal Drug Delivery Committee of the World Federation of Chinese Medicine Societies organized the experts to discuss and formed this consensus as reference for the percutaneous absorption test of cosmetic components.Materials and Methods:To standardize the in vitro diffusion cell test technique for transdermal penetration of functional cosmetic ingredients,the Transdermal Drug Delivery Professional Committee of the World Federation of Societies of Traditional Chinese Medicine has organized many discussions among experts.展开更多
This study aimed to prepare poly(D, L-lactic-co-glycolic acid) microspheres(PLGA-Ms)by a modified solid-in-oil-in-water(S/O/W) multi-emulsion technique in order to achieve sustained release with reduced initial burst ...This study aimed to prepare poly(D, L-lactic-co-glycolic acid) microspheres(PLGA-Ms)by a modified solid-in-oil-in-water(S/O/W) multi-emulsion technique in order to achieve sustained release with reduced initial burst and maintain efficient drug concentration for a prolonged period of time. Composite PLGA microspheres containing exenatideencapsulated lecithin nanoparticles(Ex-NPs-PLGA-Ms) were obtained by initial fabrication of exenatide-loaded lecithin nanoparticles(Ex-NPs) via the alcohol injection method,followed by encapsulation of Ex-NPs into PLGA microspheres. Compared to Ms prepared by the conventional water-in-oil-in-water(W/O/W) technique(Ex-PLGA-Ms), Ex-NPs-PLGAMs showed a more uniform particle size distribution, reduced initial burst release, and sustained release for over 60 d in vitro. Cytotoxicity studies showed that Ms prepared by both techniques had superior biocompatibility without causing any detectable cytotoxicity.In pharmacokinetic studies, the effective drug concentration was maintained for over 30 d following a single subcutaneous injection of two types of Ms formulation in rats, potentially prolonging the therapeutic action of Ex. In addition, administration of Ex-NPs-PLGA-Ms resulted in a more smooth plasma concentration-time profile with a higher area under the curve(AUC) compared to that of Ex-PLGA-Ms. Overall, Ex-NPs-PLGA-Ms prepared by the novel S/O/W method could be a promising sustained drug release system with reduced initial burst release and prolonged therapeutic efficacy.展开更多
Solid dispersion of calcitriol with lipophilic surfactants and triglycerides was developed by melt-mixing method to modify the release and enhance stability of the drug.The solid dispersions were characterized by diff...Solid dispersion of calcitriol with lipophilic surfactants and triglycerides was developed by melt-mixing method to modify the release and enhance stability of the drug.The solid dispersions were characterized by differential scanning calorimetry(DSC),hot stage polarized optical microscopy(HSPM),infrared spectroscopy(FTIR)and stability studies.The solid dispersion significantly enhanced the stability of calcitriol,which could be attributed to the high antioxidant activity of the solid lipid dispersion.The rapid dissolution rate from the solid dispersion was attributed to the amorphous or solid solution state of drug with improved specific surface area and wettability than the drug crystals.Therefore,solid dispersion of calcitriol with D-a-tocopheryl polyethylene glycol 1000 succinate(TPGS)offers a good approach to modify the release and enhance stability of calcitriol.The influence of lipophilic solid dispersion on drug bioavailability needs further investigation.展开更多
Microneedles(MNs)can be used for the topical treatment of skin disorders as they directly deliver therapeutics to the site of skin lesions,resulting in increased therapeutic efficacy while having minimum side effects....Microneedles(MNs)can be used for the topical treatment of skin disorders as they directly deliver therapeutics to the site of skin lesions,resulting in increased therapeutic efficacy while having minimum side effects.MNs are used to deliver different kinds of therapeutics(e.g.,small molecules,macromolecules,nanomedicines,living cells,bacteria,and exosomes)for treating various skin disorders,including superficial tumors,wounds,skin infections,inflammatory skin diseases,and abnormal skin appearance.The therapeutic efficacy of MNs can be improved by integrating the advantages of multiple therapeutics to perform combination therapy.Through careful designing,MNs can be further modified with biomimetic structures for the responsive drug release from internal and external stimuli and to enhance the transdermal delivery efficiency for robust therapeutic outcomes.Some studies have proposed the use of drug-free MNs as a promising mechanotherapeutic strategy to promote wound healing,scar removal,and hair regeneration via a mechanical communication pathway.Although MNs have several advantages,the practical application of MNs suffers from problems related to industrial manufacture and clinical evaluation,making it difficult for clinical translation.In this study,we summarized the various applications,emerging challenges,and developmental prospects of MNs in skin disorders to provide information on ways to advance clinical translation.展开更多
The purpose of this study was to investigate the spray dried lactose as carrier for dry powder inhalation(DPI).The lactose particles were prepared by spray drying,then the particle size,shape and crystal form were cha...The purpose of this study was to investigate the spray dried lactose as carrier for dry powder inhalation(DPI).The lactose particles were prepared by spray drying,then the particle size,shape and crystal form were characterized by laser diffraction,scanning electron microscopy(SEM),X-ray diffraction(XRD)and differential scanning calorimetry(DSC).The spray dried lactose particles were spherical and amorphous,but would transfer to crystal form when storage humidity was above 32%.Thus,the humidity of the storage environment should be controlled below 30%strictly in order to maintain the amorphous nature of spray dried lactose which is a great benefit to DPI development.展开更多
Background:Ferroptosis has been widely investigated as an emerging drug target,while its combination with nanoscience provides bourgeoning application prospects.The development of ferroptosis regulating nanomedicines ...Background:Ferroptosis has been widely investigated as an emerging drug target,while its combination with nanoscience provides bourgeoning application prospects.The development of ferroptosis regulating nanomedicines have attracted worldwide attentions in recent years.It would be meaningful to describe the relevant publication paradigm.Methods:Herein,a bibliometric analysis was performed using the database of Web of Science Core Collection to clarify the publication paradigm.The development of related publications in the last 6 years was described,and the revolutionary trends were figured out.Ultimately,the possible future exploration directions were proposed.Results:The bibliometric analysis of 327 documents of interest indicated that the main research focus was in multiple fields including Materials science,Science&technology,Chemistry,and Pharmacology&pharmacy.With widely cooperation and strong funding,the researchers from Chinese organizations contributed most of publications,followed with United States and Australia.Cocitation analysis revealed that several original papers reported the key molecular mechanisms of ferroptosis were considered as the foundation for subsequent studies,and some nanomedicines-related documents were taken as examples and discussed.Mining results showed that the mechanism evaluation of ferroptosis regulation therapy for cancer treatment was the hotspot.Then,several possible future explorations of ferroptosisrelated nanoscience were presented and discussed.Conclusions:The bibliometric profile of nanoscience‐ferroptosis research was analyzed in detail.We believe that the bibliometric analysis could act as a robust method for explicating the publication paradigm as a certain field.展开更多
Film coating is an important unit operation to produce solid dosage forms,thereby,the monitoring of this process is helpful to find problems in time and improve the quality of coated products.Traditional methods adopt...Film coating is an important unit operation to produce solid dosage forms,thereby,the monitoring of this process is helpful to find problems in time and improve the quality of coated products.Traditional methods adopted to monitor this process include measurement of coating weight gain,performance of disintegration and dissolution test,etc.However,not only do these methods cause destruction to the samples,but also consume time and energy.There have recently emerged the applications of process analytical technologies(PAT)on film coating,especially some novel spectroscopic and imaging technologies,which have the potential to real-time track the progress in film coating and optimize production efficiency.This article gives an overview on the application of such technologies for film coating,with the goal to provide a reference for the further researches.展开更多
Fenton reaction centered ferroptosis-apoptosis synergetic therapy has emerged as a promising tumor elimination strategy.However,the low intracellular Fenton level and accumulation of therapeutics at the lesion site gr...Fenton reaction centered ferroptosis-apoptosis synergetic therapy has emerged as a promising tumor elimination strategy.However,the low intracellular Fenton level and accumulation of therapeutics at the lesion site greatly limit the efficacy of ferroptosis therapy.To overcome these two bottlenecks,an inhalable metal polyphenol network(MPN)-hybrid liposome,encoded as LDG,was proposed for enhancing the intracellular Fenton reaction level by co-delivering the ferroptosis inducer dihydroartemisinin(DHA)and the ferrous ion(Fe2+)donor MPN.The synthesized LDG had excellent nebulization performance which significantly improved the accumulation in the lungs,about 8.2 times of intravenous injection.In terms of anticancer mechanisms,MPN raised the intracellular level of Fe2+by constructing iron cycling in the weakly acidic environment of tumors.Triggered by Fe2+,DHA with peroxide-bridge structure underwent a high level of Fenton-like reaction,promoted the production of intracellular reactive oxygen species(ROS)and induced strong ferroptosis while cooperating with apoptosis.LDG exhibited extraordinary antitumor ability in an orthotopic lung tumor model,whose tumor inhibition efficiency was 1.53(P=0.0014)and 1.32(P=0.0183)times of the LG group(liposomes coated with gallic acid(GA)-Fe MPN)and LD group(liposomes loaded with DHA),respectively,showing the strongest anticancer effect.In conclusion,the constructed MPN-hybrid liposomes could be a potent custom nanoplatform for pulmonary delivery and underscored the great potential of ferroptosis-apoptosis synergetic therapy.展开更多
Mesoporous silica nanoparticles(MSNs) are attracting increasing interest for potential biomedical applications. With tailored mesoporous structure, huge surface area and pore volume,selective surface functionality, as...Mesoporous silica nanoparticles(MSNs) are attracting increasing interest for potential biomedical applications. With tailored mesoporous structure, huge surface area and pore volume,selective surface functionality, as well as morphology control, MSNs exhibit high loading capacity for therapeutic agents and controlled release properties if modified with stimuli-responsive groups, polymers or proteins. In this review article, the applications of MSNs in pharmaceutics to improve drug bioavailability, reduce drug toxicity, and deliver with cellular targetability are summarized. Particularly,the exciting progress in the development of MSNs-based effective delivery systems for poorly soluble drugs, anticancer agents, and therapeutic genes are highlighted.展开更多
Dry powder inhalers(DPIs) offer distinct advantages as a means of pulmonary drug delivery and have attracted much attention in the field of pharmaceutical science. DPIs commonly contain micronized drug particles which...Dry powder inhalers(DPIs) offer distinct advantages as a means of pulmonary drug delivery and have attracted much attention in the field of pharmaceutical science. DPIs commonly contain micronized drug particles which, because of their cohesiveness and strong propensity to aggregate, have poor aerosolization performance. Thus carriers with a larger particle size are added to address this problem. However, the performance of DPIs is profoundly influenced by the physical properties of the carrier, particularly their particle size, morphology/shape and surface roughness. Because these factors are interdependent, it is difficult to completely understand how they individually influence DPI performance.The purpose of this review is to summarize and illuminate how these factors affect drug–carrier interaction and influence the performance of DPIs.展开更多
Dissolving microneedles carried drug molecules can effectively penetrate the stratum corneum of skin to improve the transdermal drug delivery. The traditional Chinese medicine acupuncture is based on the needle stimul...Dissolving microneedles carried drug molecules can effectively penetrate the stratum corneum of skin to improve the transdermal drug delivery. The traditional Chinese medicine acupuncture is based on the needle stimulation at a specific location(acupoint) to generate and transmit biochemical and physiological signals which alter the pathophysiological state of patients. However, the pain associated with conventional acupuncture needles and the requirement of highly trained professionals limit the development of acupuncture in non-Asian countries. The purpose of this study is to investigate whether the dissolving microneedles can be utilized as a self-administered painless replacement for acupuncture and locally released drug molecules can achieve expected therapeutic outcomes. Immunosuppressive rats were treated with acupuncture at Zusanli(ST36) acupoint using microneedles containing thymopentin.The immune functions and psychological mood of the immunosuppressed animals were examined. The proliferation of splenocytes was examined by CCK-8 assay. CD4 and CD8 expression patterns in spleen cells were detected by flow cytometry. The current study showed that use of either microneedles containing thymopentin or conventional acupuncture both resulted in immune cell proliferation, which was confirmed by flow cytometry. Furthermore, either conventional acupuncture or microneedles were able to effectively mitigate the anxiety caused by immune-suppression when applied on the ST36.展开更多
When nanoparticles were introduced into the biological media,the protein corona would be formed,which endowed the nanoparticles with new bio-identities.Thus,controlling protein corona formation is critical to in vivo ...When nanoparticles were introduced into the biological media,the protein corona would be formed,which endowed the nanoparticles with new bio-identities.Thus,controlling protein corona formation is critical to in vivo therapeutic effect.Controlling the particle size is the most feasible method during design,and the infuence of media pH which varies with disease condition is quite important.The impact of particle size and pH on bovine serum albumin(BSA)corona formation of solid lipid nanoparticles(SLNs)was studied here.The BSA corona formation of SLNs with increasing particle size(120-480 nm)in pH 6.0 and 7.4 was investigated.Multiple techniques were employed for visualization study,conformational structure study and mechanism study,etc."BSA corona-caused aggregation"of SLN2-3 was revealed in pH 6.0 while the dispersed state of SLNs was maintained in pH 7.4,which signifcantly affected the secondary structure of BSA and cell uptake of SLNs.The main interaction was driven by van der Waals force plus hydrogen bonding in p H 7.4,while by electrostatic attraction in pH 6.0,and size-dependent adsorption was confrmed.This study provides a systematic insight to the understanding of protein corona formation of SLNs.展开更多
Psoriatic arthritis(PsA)is a complicated psoriasis comorbidity with manifestations of psoriatic skin and arthritic joints,and tailoring specific treatment strategies for simultaneously delivering different drugs to di...Psoriatic arthritis(PsA)is a complicated psoriasis comorbidity with manifestations of psoriatic skin and arthritic joints,and tailoring specific treatment strategies for simultaneously delivering different drugs to different action sites in PsA remains challenging.We developed a need-based layered dissolving microneedle(MN)system loading immunosuppressant tacrolimus(TAC)and antiinflammatory diclofenac(DIC)in different layers of MNs,i.e.,TD-MN,which aims to specifically deliver TAC and DIC to skin and articular cavity,achieving simultaneous alleviation of psoriatic skin and arthritic joint lesions in PsA.In vitro and in vivo skin permeation demonstrated that the inter-layer retained TAC within the skin of~100μm,while the tip-layer delivered DIC up to~300μm into the articular cavity.TD-MN not only efficiently decreased the psoriasis area and severity index scores and recovered the thickened epidermis of imiquimod-induced psoriasis but also alleviated carrageenan/kaolin-induced arthritis even better than DIC injection through reducing joint swelling,muscle atrophy,and cartilage destruction.Importantly,TD-MN significantly inhibited the serum TNF-αand IL-17 A in psoriatic and arthritic rats.The results support that this approach represents a promising alternative to multi-administration of different drugs for comorbidity,providing a convenient and effective strategy for meeting the requirements of PsA treatment.展开更多
Nanoparticles(NPs)have shown potential in cancer therapy,while a single administration conferring a satisfactory outcome is still unavailable.To address this issue,the dissolving microneedles(DMNs)were developed to lo...Nanoparticles(NPs)have shown potential in cancer therapy,while a single administration conferring a satisfactory outcome is still unavailable.To address this issue,the dissolving microneedles(DMNs)were developed to locally deliver functionalized NPs with combined chemotherapy and photothermal therapy(PTT).α-Tocopheryl polyethylene glycol succinate(TPGS)/hyaluronic acid(HA)dualfunctionalized PLGA NPs(HD10 NPs)were fabricated to co-load paclitaxel and indocyanine green.HD10 NPs significantly enhanced the cytotoxicity of low-dose paclitaxel because of active and mitochondrial targeting by HA and TPGS,respectively.PTT could further sensitize tumor cells toward chemotherapy by promoting apoptosis into the advanced period,highly activating caspase 3 enzyme,and significantly reducing the expression of survivin and MMP-9 proteins.Further,the anti-tumor effects of HD10 NPs delivered through different administration routes were conducted on the 4 T1 tumorbearing mice.After a single administration,HD10 NPs delivered with DMNs showed the best antitumor effect when giving chemotherapy alone.As expected,the anti-tumor effect was profoundly enhanced after combined therapy,and complete tumor ablation was achieved in the mice treated with DMNs and intra-tumor injection.Moreover,DMNs showed better safety due to moderate hyperthermia.Therefore,the DMNs along with combined chemo-photothermal therapy provide a viable treatment option for superficial tumors.展开更多
Membrane-disruptive peptides/peptidomimetics(MDPs)are antimicrobials or anticarcinogens that present a general killing mechanism through the physical disruption of cell membranes,in contrast to conventional chemothera...Membrane-disruptive peptides/peptidomimetics(MDPs)are antimicrobials or anticarcinogens that present a general killing mechanism through the physical disruption of cell membranes,in contrast to conventional chemotherapeutic drugs,which act on precise targets such as DNA or specific enzymes.Owing to their rapid action,broad-spectrum activity,and mechanisms of action that potentially hinder the development of resistance,MDPs have been increasingly considered as future therapeutics in the drug-resistant era.Recently,growing experimental evidence has demonstrated that MDPs can also be utilized as adjuvants to enhance the therapeutic effects of other agents.In this review,we evaluate the literature around the broad-spectrum antimicrobial properties and anticancer activity of MDPs,and summarize the current development and mechanisms of MDPs alone or in combination with other agents.Notably,this review highlights recent advances in the design of various MDP-based drug delivery systems that can improve the therapeutic effect of MDPs,minimize side effects,and promote the codelivery of multiple chemotherapeutics,for more efficient antimicrobial and anticancer therapy.展开更多
Hypertrophic scar(HS)is an undesirable skin abnormality following deep burns or operations.Although intralesional multi-injection with the suspension of triamcinolone acetonide(TA)and 5-fluorouracil(5-Fu)has exhibited...Hypertrophic scar(HS)is an undesirable skin abnormality following deep burns or operations.Although intralesional multi-injection with the suspension of triamcinolone acetonide(TA)and 5-fluorouracil(5-Fu)has exhibited great promise to HS treatment in clinical,the difference of metabolic behavior between TA and 5-Fu remarkably compromised the treatment efficacy.Besides,the traditional injection with great pain is highly dependent on the skill of the experts,which results in poor compliance.Herein,a bilayer dissolving microneedle(BMN)containing TA and 5-Fu(TA-5-Fu-BMN)with biphasic release profile was designed for HS therapy.Equipped with several micro-scale needle tips,the BMN could be self-pressed into the HS with uniform drug distribution and less pain.Both in vitro permeation and in vivo HS retention tests revealed that TA and 5-Fu could coexist in the scar tissue for a sufficient time period due to the well-designed biphasic release property.Subsequently,the rabbit ear HS model was established to assess therapeutic efficacy.The histological analysis showed that TA-5-Fu-BMN could significantly reduce abnormal fibroblast proliferation and collagen fiber deposition.It was also found that the value of scar elevation index was ameliorated to a basal level,together with the downregulation of mRNA and protein expression of Collagen I(Col I)and transforming growth factor-β1(TGF-β1)after application of TA-5-Fu-BMN.In conclusion,the BMN with biphasic release profiles could serve as a potential strategy for HS treatment providing both convenient administrations as well as controlled drug release behavior.展开更多
The therapeutic efficacy of cisplatin has been restricted by drug resistance of cancers.Intracellular glutathione(GSH)detoxification of cisplatin under the catalysis of glutathione S-transferases(GST)plays important r...The therapeutic efficacy of cisplatin has been restricted by drug resistance of cancers.Intracellular glutathione(GSH)detoxification of cisplatin under the catalysis of glutathione S-transferases(GST)plays important roles in the development of cisplatin resistance.Herein,a strategy of“pincer movement”based on simultaneous GSH depletion and GST inhibition is proposed to enhance cisplatin-based chemotherapy.Specifically,a redox-responsive nanomedicine based on disulfide-bridged degradable organosilica hybrid nanoparticles is developed and loaded with cisplatin and ethacrynic acid(EA),a GST inhibitor.Responding to high level of intracellular GSH,the hybrid nanoparticles can be gradually degraded due to the break of disulfide bonds,which further promotes drug release.Meanwhile,the disulfide-mediated GSH depletion and EA-induced GST inhibition cooperatively prevent cellular detoxification of cisplatin and reverse drug resistance.Moreover,the nanomedicine is integrated into microneedles for intralesional drug delivery against cisplatin-resistant melanoma.The in vivo results show that the nanomedicine-loaded microneedles can achieve significant GSH depletion,GST inhibition,and consequent tumor growth suppression.Overall,this research provides a promising strategy for the construction of new-type nanomedicines to overcome cisplatin resistance,which extends the biomedical application of organosilica hybrid nanomaterials and enables more efficient chemotherapy against drug-resistant cancers.展开更多
Proteins and peptides have become a significant therapeutic modality for various diseases because of their high potency and specificity.However,the inherent properties of these drugs,such as large molecular weight,poo...Proteins and peptides have become a significant therapeutic modality for various diseases because of their high potency and specificity.However,the inherent properties of these drugs,such as large molecular weight,poor stability,and conformational flexibility,make them difficult to be formulated and delivered.Injection is the primary route for clinical administration of protein and peptide drugs,which usually leads to poor patient’s compliance.As a portable,minimally invasive device,microneedles(MNs)can overcome the skin barrier and generate reversible microchannels for effective macromolecule permeation.In this review,we highlighted the recent advances in MNs-mediated transdermal delivery of protein and peptide drugs.Emphasis was given to the latest development in representative MNs design and fabrication.We also summarize the current application status of MNs-mediated transdermal protein and peptide delivery,especially in the field of infectious disease,diabetes,cancer,and other disease therapy.Finally,the current status of clinical translation and a perspective on future development are also provided.展开更多
The purpose of this study was to compare the pharmacokinetic profiles of tetramethylpyrazine phosphate(TMPP)in plasma and extracellular fluid of the cerebral cortex of rats via three delivery routes:intranasal(i.n.),i...The purpose of this study was to compare the pharmacokinetic profiles of tetramethylpyrazine phosphate(TMPP)in plasma and extracellular fluid of the cerebral cortex of rats via three delivery routes:intranasal(i.n.),intragastric(i.g.)and intravenous(i.v.)administration.After i.n.,i.g.and i.v.administration of a single-dose at 10 mg/kg,cerebral cortex dialysates and plasma samples drawn from the carotid artery were collected at timed intervals.The concentration of TMPP in the samples was analyzed by HPLC.The area under the concentration-time curve(AUC)and the ratio of the AUCbrain to the AUCplasma(drug targeting efficiency,DTE)was calculated to evaluate the brain targeting efficiency of the drug via these different routes of administration.After i.n.administration,TMPP was rapidly absorbed to reach its peak plasma concentration within 5 min and showed a delayed uptake into cerebral cortex(t_(max)=15 min).The ratio of the AUCbrain dialysates value between i.n.route and i.v.injection was 0.68,which was greater than that obtained after i.g.administration(0.43).The systemic bioavailability obtained with i.n.administration was greater than that obtained by the i.g.route(86.33%vs.50.39%),whereas the DTE of the nasal route was 78.89%,close to that of oral administration(85.69%).These results indicate that TMPP is rapidly absorbed from the nasal mucosa into the systemic circulation,and then crosses the blood-brain barrier(BBB)to reach the cerebral cortex.Intranasal administration of TMPP could be a promising alternative to intravenous and oral approaches.展开更多
基金funding from the National Natural Science Foundation of China(Grant No.:82104070)Guangdong Universities Keynote Regions Special Funded Project,China(Grant No.:2022ZDZX2002)China Postdoctoral Science Foundation Special Funded Project(Grant No.:2022T150268)。
文摘Ferroptosis is a nonapoptotic form of cell death and differs considerably from the well-known forms of cell death in terms of cell morphology,genetics,and biochemistry.The three primary pathways for cell ferroptosis are system Xc^(-)/glutathione peroxidase 4(GPX4),lipid metabolism,and ferric metabolism.Since the discovery of ferroptosis,mounting evidence has revealed its critical regulatory role in several diseases,especially as a novel potential target for cancer therapy,thereby attracting increasing attention in the fields of tumor biology and anti-tumor therapy.Accordingly,broad prospects exist for identifying ferroptosis as a potential therapeutic target.In this review,we aimed to systematically summarize the activation and defense mechanisms of ferroptosis,highlight the therapeutic targets,and discuss the design of nanomedicines for ferroptosis regulation.In addition,we opted to present the advantages and disadvantages of current ferroptosis research and provide an optimistic vision of future directions in related fields.Overall,we aim to provide new ideas for further ferroptosis research and inspire new strategies for disease diagnosis and treatment.
文摘Background:Diffusion cell test is one of the most commonly used in vitro model to detect the percutaneous absorption of cosmetic ingredients.Although PRC State Administration of Quality Supervision and Quarantine has issued the guideline for the in vitro test method for the percutaneous absorption of drug molecules,there is still a lack of guideline for the percutaneous absorption test of cosmetic components.Objective:In order to improve the standardized level and make the in vitro percutaneous absorption test of cosmetic ingredients more comparable,based on the international and domestic experience,Transdermal Drug Delivery Committee of the World Federation of Chinese Medicine Societies organized the experts to discuss and formed this consensus as reference for the percutaneous absorption test of cosmetic components.Materials and Methods:To standardize the in vitro diffusion cell test technique for transdermal penetration of functional cosmetic ingredients,the Transdermal Drug Delivery Professional Committee of the World Federation of Societies of Traditional Chinese Medicine has organized many discussions among experts.
基金the China Postdoctoral Science Foundation(Grant No.2016M602442)the Science and Technology Plan Projects of Guangdong Province(Grant No.2015B020232010)+1 种基金the 111 project(Grant No.B16047)the Natural Science Fund Project of Guangdong Province(Grant No.2018A030310555,Grant No.2016A030312013)。
文摘This study aimed to prepare poly(D, L-lactic-co-glycolic acid) microspheres(PLGA-Ms)by a modified solid-in-oil-in-water(S/O/W) multi-emulsion technique in order to achieve sustained release with reduced initial burst and maintain efficient drug concentration for a prolonged period of time. Composite PLGA microspheres containing exenatideencapsulated lecithin nanoparticles(Ex-NPs-PLGA-Ms) were obtained by initial fabrication of exenatide-loaded lecithin nanoparticles(Ex-NPs) via the alcohol injection method,followed by encapsulation of Ex-NPs into PLGA microspheres. Compared to Ms prepared by the conventional water-in-oil-in-water(W/O/W) technique(Ex-PLGA-Ms), Ex-NPs-PLGAMs showed a more uniform particle size distribution, reduced initial burst release, and sustained release for over 60 d in vitro. Cytotoxicity studies showed that Ms prepared by both techniques had superior biocompatibility without causing any detectable cytotoxicity.In pharmacokinetic studies, the effective drug concentration was maintained for over 30 d following a single subcutaneous injection of two types of Ms formulation in rats, potentially prolonging the therapeutic action of Ex. In addition, administration of Ex-NPs-PLGA-Ms resulted in a more smooth plasma concentration-time profile with a higher area under the curve(AUC) compared to that of Ex-PLGA-Ms. Overall, Ex-NPs-PLGA-Ms prepared by the novel S/O/W method could be a promising sustained drug release system with reduced initial burst release and prolonged therapeutic efficacy.
基金The work was supported by the National Natural Science Foundation of China(No 81173002)National Science and Technology Support Program(No 2012BAI35B02)International Science and Technology Cooperation and Exchange Projects(No 2008DFA31080).
文摘Solid dispersion of calcitriol with lipophilic surfactants and triglycerides was developed by melt-mixing method to modify the release and enhance stability of the drug.The solid dispersions were characterized by differential scanning calorimetry(DSC),hot stage polarized optical microscopy(HSPM),infrared spectroscopy(FTIR)and stability studies.The solid dispersion significantly enhanced the stability of calcitriol,which could be attributed to the high antioxidant activity of the solid lipid dispersion.The rapid dissolution rate from the solid dispersion was attributed to the amorphous or solid solution state of drug with improved specific surface area and wettability than the drug crystals.Therefore,solid dispersion of calcitriol with D-a-tocopheryl polyethylene glycol 1000 succinate(TPGS)offers a good approach to modify the release and enhance stability of calcitriol.The influence of lipophilic solid dispersion on drug bioavailability needs further investigation.
基金financially supported by the National Natural Science Foundation of China(82104071)Natural Science Foundation of Guangdong Province(2022B1515020085)Leading Entrepreneurship Team Project of Zengcheng District(202001004)。
文摘Microneedles(MNs)can be used for the topical treatment of skin disorders as they directly deliver therapeutics to the site of skin lesions,resulting in increased therapeutic efficacy while having minimum side effects.MNs are used to deliver different kinds of therapeutics(e.g.,small molecules,macromolecules,nanomedicines,living cells,bacteria,and exosomes)for treating various skin disorders,including superficial tumors,wounds,skin infections,inflammatory skin diseases,and abnormal skin appearance.The therapeutic efficacy of MNs can be improved by integrating the advantages of multiple therapeutics to perform combination therapy.Through careful designing,MNs can be further modified with biomimetic structures for the responsive drug release from internal and external stimuli and to enhance the transdermal delivery efficiency for robust therapeutic outcomes.Some studies have proposed the use of drug-free MNs as a promising mechanotherapeutic strategy to promote wound healing,scar removal,and hair regeneration via a mechanical communication pathway.Although MNs have several advantages,the practical application of MNs suffers from problems related to industrial manufacture and clinical evaluation,making it difficult for clinical translation.In this study,we summarized the various applications,emerging challenges,and developmental prospects of MNs in skin disorders to provide information on ways to advance clinical translation.
基金This work was supported by the National Natural Science Foundation of China(No.:81173002)the National Science and Technology Support Program(No.:2012BAI35B02).
文摘The purpose of this study was to investigate the spray dried lactose as carrier for dry powder inhalation(DPI).The lactose particles were prepared by spray drying,then the particle size,shape and crystal form were characterized by laser diffraction,scanning electron microscopy(SEM),X-ray diffraction(XRD)and differential scanning calorimetry(DSC).The spray dried lactose particles were spherical and amorphous,but would transfer to crystal form when storage humidity was above 32%.Thus,the humidity of the storage environment should be controlled below 30%strictly in order to maintain the amorphous nature of spray dried lactose which is a great benefit to DPI development.
基金National Natural Science Foundation of China,Grant/Award Numbers:81973263,82073774,82104070。
文摘Background:Ferroptosis has been widely investigated as an emerging drug target,while its combination with nanoscience provides bourgeoning application prospects.The development of ferroptosis regulating nanomedicines have attracted worldwide attentions in recent years.It would be meaningful to describe the relevant publication paradigm.Methods:Herein,a bibliometric analysis was performed using the database of Web of Science Core Collection to clarify the publication paradigm.The development of related publications in the last 6 years was described,and the revolutionary trends were figured out.Ultimately,the possible future exploration directions were proposed.Results:The bibliometric analysis of 327 documents of interest indicated that the main research focus was in multiple fields including Materials science,Science&technology,Chemistry,and Pharmacology&pharmacy.With widely cooperation and strong funding,the researchers from Chinese organizations contributed most of publications,followed with United States and Australia.Cocitation analysis revealed that several original papers reported the key molecular mechanisms of ferroptosis were considered as the foundation for subsequent studies,and some nanomedicines-related documents were taken as examples and discussed.Mining results showed that the mechanism evaluation of ferroptosis regulation therapy for cancer treatment was the hotspot.Then,several possible future explorations of ferroptosisrelated nanoscience were presented and discussed.Conclusions:The bibliometric profile of nanoscience‐ferroptosis research was analyzed in detail.We believe that the bibliometric analysis could act as a robust method for explicating the publication paradigm as a certain field.
基金supported by National Natural Science Foundation of China(81202476)Medical Research Foundation of Guangdong Province(B2012079).
文摘Film coating is an important unit operation to produce solid dosage forms,thereby,the monitoring of this process is helpful to find problems in time and improve the quality of coated products.Traditional methods adopted to monitor this process include measurement of coating weight gain,performance of disintegration and dissolution test,etc.However,not only do these methods cause destruction to the samples,but also consume time and energy.There have recently emerged the applications of process analytical technologies(PAT)on film coating,especially some novel spectroscopic and imaging technologies,which have the potential to real-time track the progress in film coating and optimize production efficiency.This article gives an overview on the application of such technologies for film coating,with the goal to provide a reference for the further researches.
基金the National Natural Science Foundation of China(Nos.82104070 and 82373800)Guangdong Universities Keynote Regions Special Funded Project(No.2022ZDZX2002)General Project of Traditional Chinese Medicine Bureau of Guangdong Province(No.20241071).
文摘Fenton reaction centered ferroptosis-apoptosis synergetic therapy has emerged as a promising tumor elimination strategy.However,the low intracellular Fenton level and accumulation of therapeutics at the lesion site greatly limit the efficacy of ferroptosis therapy.To overcome these two bottlenecks,an inhalable metal polyphenol network(MPN)-hybrid liposome,encoded as LDG,was proposed for enhancing the intracellular Fenton reaction level by co-delivering the ferroptosis inducer dihydroartemisinin(DHA)and the ferrous ion(Fe2+)donor MPN.The synthesized LDG had excellent nebulization performance which significantly improved the accumulation in the lungs,about 8.2 times of intravenous injection.In terms of anticancer mechanisms,MPN raised the intracellular level of Fe2+by constructing iron cycling in the weakly acidic environment of tumors.Triggered by Fe2+,DHA with peroxide-bridge structure underwent a high level of Fenton-like reaction,promoted the production of intracellular reactive oxygen species(ROS)and induced strong ferroptosis while cooperating with apoptosis.LDG exhibited extraordinary antitumor ability in an orthotopic lung tumor model,whose tumor inhibition efficiency was 1.53(P=0.0014)and 1.32(P=0.0183)times of the LG group(liposomes coated with gallic acid(GA)-Fe MPN)and LD group(liposomes loaded with DHA),respectively,showing the strongest anticancer effect.In conclusion,the constructed MPN-hybrid liposomes could be a potent custom nanoplatform for pulmonary delivery and underscored the great potential of ferroptosis-apoptosis synergetic therapy.
基金financial support from the National Natural Science Foundation of China (81473155)the Natural Science Fund Project of Guangdong Province (Grant No. 2016A030312013)+1 种基金the Science and Technology Plan Projects of Guangdong Province (Grant No. 2015B020232010)the Science and Technology Foundation Guangzhou (201707010103)
文摘Mesoporous silica nanoparticles(MSNs) are attracting increasing interest for potential biomedical applications. With tailored mesoporous structure, huge surface area and pore volume,selective surface functionality, as well as morphology control, MSNs exhibit high loading capacity for therapeutic agents and controlled release properties if modified with stimuli-responsive groups, polymers or proteins. In this review article, the applications of MSNs in pharmaceutics to improve drug bioavailability, reduce drug toxicity, and deliver with cellular targetability are summarized. Particularly,the exciting progress in the development of MSNs-based effective delivery systems for poorly soluble drugs, anticancer agents, and therapeutic genes are highlighted.
基金supported by Pearl River S&T Nova Program of Guangzhou(2014J2200082)
文摘Dry powder inhalers(DPIs) offer distinct advantages as a means of pulmonary drug delivery and have attracted much attention in the field of pharmaceutical science. DPIs commonly contain micronized drug particles which, because of their cohesiveness and strong propensity to aggregate, have poor aerosolization performance. Thus carriers with a larger particle size are added to address this problem. However, the performance of DPIs is profoundly influenced by the physical properties of the carrier, particularly their particle size, morphology/shape and surface roughness. Because these factors are interdependent, it is difficult to completely understand how they individually influence DPI performance.The purpose of this review is to summarize and illuminate how these factors affect drug–carrier interaction and influence the performance of DPIs.
基金supported by the Science and Technology Plan Projects of Guangdong Province(Grant No.2015B020232010)Public Research Platform for Production Technology of Novel Pharmaceutical Formulations,Science and Technology Foundation Guangzhou(201509030006)+2 种基金National Natural Science Foundation of China(81473155)111 project(B16047)the Key Laboratory Foundation of Guangdong Province(2011A060901014)
文摘Dissolving microneedles carried drug molecules can effectively penetrate the stratum corneum of skin to improve the transdermal drug delivery. The traditional Chinese medicine acupuncture is based on the needle stimulation at a specific location(acupoint) to generate and transmit biochemical and physiological signals which alter the pathophysiological state of patients. However, the pain associated with conventional acupuncture needles and the requirement of highly trained professionals limit the development of acupuncture in non-Asian countries. The purpose of this study is to investigate whether the dissolving microneedles can be utilized as a self-administered painless replacement for acupuncture and locally released drug molecules can achieve expected therapeutic outcomes. Immunosuppressive rats were treated with acupuncture at Zusanli(ST36) acupoint using microneedles containing thymopentin.The immune functions and psychological mood of the immunosuppressed animals were examined. The proliferation of splenocytes was examined by CCK-8 assay. CD4 and CD8 expression patterns in spleen cells were detected by flow cytometry. The current study showed that use of either microneedles containing thymopentin or conventional acupuncture both resulted in immune cell proliferation, which was confirmed by flow cytometry. Furthermore, either conventional acupuncture or microneedles were able to effectively mitigate the anxiety caused by immune-suppression when applied on the ST36.
基金the project grants from National Natural Science Foundation of China(81703431 and 81673375)the Natural Science Fund Project of Guangdong Province(2016A030312013,China)。
文摘When nanoparticles were introduced into the biological media,the protein corona would be formed,which endowed the nanoparticles with new bio-identities.Thus,controlling protein corona formation is critical to in vivo therapeutic effect.Controlling the particle size is the most feasible method during design,and the infuence of media pH which varies with disease condition is quite important.The impact of particle size and pH on bovine serum albumin(BSA)corona formation of solid lipid nanoparticles(SLNs)was studied here.The BSA corona formation of SLNs with increasing particle size(120-480 nm)in pH 6.0 and 7.4 was investigated.Multiple techniques were employed for visualization study,conformational structure study and mechanism study,etc."BSA corona-caused aggregation"of SLN2-3 was revealed in pH 6.0 while the dispersed state of SLNs was maintained in pH 7.4,which signifcantly affected the secondary structure of BSA and cell uptake of SLNs.The main interaction was driven by van der Waals force plus hydrogen bonding in p H 7.4,while by electrostatic attraction in pH 6.0,and size-dependent adsorption was confrmed.This study provides a systematic insight to the understanding of protein corona formation of SLNs.
基金financially supported by the National Natural Science Foundation of China(Nos.81973491 and 81473358,China)the Guangdong Basic and Applied Basic Research Foundation(2019A1515011161,China)
文摘Psoriatic arthritis(PsA)is a complicated psoriasis comorbidity with manifestations of psoriatic skin and arthritic joints,and tailoring specific treatment strategies for simultaneously delivering different drugs to different action sites in PsA remains challenging.We developed a need-based layered dissolving microneedle(MN)system loading immunosuppressant tacrolimus(TAC)and antiinflammatory diclofenac(DIC)in different layers of MNs,i.e.,TD-MN,which aims to specifically deliver TAC and DIC to skin and articular cavity,achieving simultaneous alleviation of psoriatic skin and arthritic joint lesions in PsA.In vitro and in vivo skin permeation demonstrated that the inter-layer retained TAC within the skin of~100μm,while the tip-layer delivered DIC up to~300μm into the articular cavity.TD-MN not only efficiently decreased the psoriasis area and severity index scores and recovered the thickened epidermis of imiquimod-induced psoriasis but also alleviated carrageenan/kaolin-induced arthritis even better than DIC injection through reducing joint swelling,muscle atrophy,and cartilage destruction.Importantly,TD-MN significantly inhibited the serum TNF-αand IL-17 A in psoriatic and arthritic rats.The results support that this approach represents a promising alternative to multi-administration of different drugs for comorbidity,providing a convenient and effective strategy for meeting the requirements of PsA treatment.
基金supported by the Fundamental Research Funds for the Central Universities(21620356,China)the Research and Development Plan for Key Areas in Guangdong Province(2019B020204002,China)the National Natural Science Foundation(81803466,China)。
文摘Nanoparticles(NPs)have shown potential in cancer therapy,while a single administration conferring a satisfactory outcome is still unavailable.To address this issue,the dissolving microneedles(DMNs)were developed to locally deliver functionalized NPs with combined chemotherapy and photothermal therapy(PTT).α-Tocopheryl polyethylene glycol succinate(TPGS)/hyaluronic acid(HA)dualfunctionalized PLGA NPs(HD10 NPs)were fabricated to co-load paclitaxel and indocyanine green.HD10 NPs significantly enhanced the cytotoxicity of low-dose paclitaxel because of active and mitochondrial targeting by HA and TPGS,respectively.PTT could further sensitize tumor cells toward chemotherapy by promoting apoptosis into the advanced period,highly activating caspase 3 enzyme,and significantly reducing the expression of survivin and MMP-9 proteins.Further,the anti-tumor effects of HD10 NPs delivered through different administration routes were conducted on the 4 T1 tumorbearing mice.After a single administration,HD10 NPs delivered with DMNs showed the best antitumor effect when giving chemotherapy alone.As expected,the anti-tumor effect was profoundly enhanced after combined therapy,and complete tumor ablation was achieved in the mice treated with DMNs and intra-tumor injection.Moreover,DMNs showed better safety due to moderate hyperthermia.Therefore,the DMNs along with combined chemo-photothermal therapy provide a viable treatment option for superficial tumors.
基金financially supported by the National Natural Science Foundation of China(Nos.81803467 and 81773660)the Research and Development Plan for Key Areas in Guangdong Province(Nos.2019B020204002 and 2018B030332001,China)
文摘Membrane-disruptive peptides/peptidomimetics(MDPs)are antimicrobials or anticarcinogens that present a general killing mechanism through the physical disruption of cell membranes,in contrast to conventional chemotherapeutic drugs,which act on precise targets such as DNA or specific enzymes.Owing to their rapid action,broad-spectrum activity,and mechanisms of action that potentially hinder the development of resistance,MDPs have been increasingly considered as future therapeutics in the drug-resistant era.Recently,growing experimental evidence has demonstrated that MDPs can also be utilized as adjuvants to enhance the therapeutic effects of other agents.In this review,we evaluate the literature around the broad-spectrum antimicrobial properties and anticancer activity of MDPs,and summarize the current development and mechanisms of MDPs alone or in combination with other agents.Notably,this review highlights recent advances in the design of various MDP-based drug delivery systems that can improve the therapeutic effect of MDPs,minimize side effects,and promote the codelivery of multiple chemotherapeutics,for more efficient antimicrobial and anticancer therapy.
基金supported by the National Natural Science Foundation of China[grant No.81803466]the Research and Development Plan for Key Areas in Guangdong Province[grant No.2019B020204002]the National Science and Technology Major Program[grant No.2017zx09101001].
文摘Hypertrophic scar(HS)is an undesirable skin abnormality following deep burns or operations.Although intralesional multi-injection with the suspension of triamcinolone acetonide(TA)and 5-fluorouracil(5-Fu)has exhibited great promise to HS treatment in clinical,the difference of metabolic behavior between TA and 5-Fu remarkably compromised the treatment efficacy.Besides,the traditional injection with great pain is highly dependent on the skill of the experts,which results in poor compliance.Herein,a bilayer dissolving microneedle(BMN)containing TA and 5-Fu(TA-5-Fu-BMN)with biphasic release profile was designed for HS therapy.Equipped with several micro-scale needle tips,the BMN could be self-pressed into the HS with uniform drug distribution and less pain.Both in vitro permeation and in vivo HS retention tests revealed that TA and 5-Fu could coexist in the scar tissue for a sufficient time period due to the well-designed biphasic release property.Subsequently,the rabbit ear HS model was established to assess therapeutic efficacy.The histological analysis showed that TA-5-Fu-BMN could significantly reduce abnormal fibroblast proliferation and collagen fiber deposition.It was also found that the value of scar elevation index was ameliorated to a basal level,together with the downregulation of mRNA and protein expression of Collagen I(Col I)and transforming growth factor-β1(TGF-β1)after application of TA-5-Fu-BMN.In conclusion,the BMN with biphasic release profiles could serve as a potential strategy for HS treatment providing both convenient administrations as well as controlled drug release behavior.
基金This work was financially supported by the National Natural Science Foundation of China(No.81803466)the Natural Science Foundation of Guangdong Province(No.2018A030310095,China)the Key Areas Research and Development Program of Guangdong Province(No.2019B020204002,China).
文摘The therapeutic efficacy of cisplatin has been restricted by drug resistance of cancers.Intracellular glutathione(GSH)detoxification of cisplatin under the catalysis of glutathione S-transferases(GST)plays important roles in the development of cisplatin resistance.Herein,a strategy of“pincer movement”based on simultaneous GSH depletion and GST inhibition is proposed to enhance cisplatin-based chemotherapy.Specifically,a redox-responsive nanomedicine based on disulfide-bridged degradable organosilica hybrid nanoparticles is developed and loaded with cisplatin and ethacrynic acid(EA),a GST inhibitor.Responding to high level of intracellular GSH,the hybrid nanoparticles can be gradually degraded due to the break of disulfide bonds,which further promotes drug release.Meanwhile,the disulfide-mediated GSH depletion and EA-induced GST inhibition cooperatively prevent cellular detoxification of cisplatin and reverse drug resistance.Moreover,the nanomedicine is integrated into microneedles for intralesional drug delivery against cisplatin-resistant melanoma.The in vivo results show that the nanomedicine-loaded microneedles can achieve significant GSH depletion,GST inhibition,and consequent tumor growth suppression.Overall,this research provides a promising strategy for the construction of new-type nanomedicines to overcome cisplatin resistance,which extends the biomedical application of organosilica hybrid nanomaterials and enables more efficient chemotherapy against drug-resistant cancers.
基金funded by the National Natural Science Foundation(Project No.81803466,China)Guangdong Macao joint innovation funding project(Project No.2020A050515009,China)+1 种基金the Research and Development Plan for Key Areas in Guangdong Province(Project No.2019B020204002,China)the Foundation of Traditional Chinese Medicine Bureau of Guangdong Province(Project No.20191057,China)
文摘Proteins and peptides have become a significant therapeutic modality for various diseases because of their high potency and specificity.However,the inherent properties of these drugs,such as large molecular weight,poor stability,and conformational flexibility,make them difficult to be formulated and delivered.Injection is the primary route for clinical administration of protein and peptide drugs,which usually leads to poor patient’s compliance.As a portable,minimally invasive device,microneedles(MNs)can overcome the skin barrier and generate reversible microchannels for effective macromolecule permeation.In this review,we highlighted the recent advances in MNs-mediated transdermal delivery of protein and peptide drugs.Emphasis was given to the latest development in representative MNs design and fabrication.We also summarize the current application status of MNs-mediated transdermal protein and peptide delivery,especially in the field of infectious disease,diabetes,cancer,and other disease therapy.Finally,the current status of clinical translation and a perspective on future development are also provided.
基金The authors gratefully acknowledge the financial support by Department of Science and Technology,Guangdong,China(2010B03070009).
文摘The purpose of this study was to compare the pharmacokinetic profiles of tetramethylpyrazine phosphate(TMPP)in plasma and extracellular fluid of the cerebral cortex of rats via three delivery routes:intranasal(i.n.),intragastric(i.g.)and intravenous(i.v.)administration.After i.n.,i.g.and i.v.administration of a single-dose at 10 mg/kg,cerebral cortex dialysates and plasma samples drawn from the carotid artery were collected at timed intervals.The concentration of TMPP in the samples was analyzed by HPLC.The area under the concentration-time curve(AUC)and the ratio of the AUCbrain to the AUCplasma(drug targeting efficiency,DTE)was calculated to evaluate the brain targeting efficiency of the drug via these different routes of administration.After i.n.administration,TMPP was rapidly absorbed to reach its peak plasma concentration within 5 min and showed a delayed uptake into cerebral cortex(t_(max)=15 min).The ratio of the AUCbrain dialysates value between i.n.route and i.v.injection was 0.68,which was greater than that obtained after i.g.administration(0.43).The systemic bioavailability obtained with i.n.administration was greater than that obtained by the i.g.route(86.33%vs.50.39%),whereas the DTE of the nasal route was 78.89%,close to that of oral administration(85.69%).These results indicate that TMPP is rapidly absorbed from the nasal mucosa into the systemic circulation,and then crosses the blood-brain barrier(BBB)to reach the cerebral cortex.Intranasal administration of TMPP could be a promising alternative to intravenous and oral approaches.