Kinesins are microtubule-based motors involved in various intracellular transports. Neurons, flagellated cells, and pigment cells have been traditionally used as model systems to study the cellular functions of kinesi...Kinesins are microtubule-based motors involved in various intracellular transports. Neurons, flagellated cells, and pigment cells have been traditionally used as model systems to study the cellular functions of kinesins. Here, we report silkworm posterior silkgland (PSG), specialized cells with an extensive endomembrane system for intracellular transport and efficient secretion of fibroin, as a novel model for kinesin study. To investigate kinesindriven intracellular transport in PSG cells, we cloned five silkworm kinesin-like proteins (KLPs), BmKinesin-1, BmKinesin-6, BmKinesin-7, BmKinesin-13, and BmKinesin-14A. We determined their expression patterns by relative real-time PCR and western blotting. Immunofluorescence microscopy verified their colocalization with microtubules. By combining pull-down assays, LC-MS/MS, and western blotting analysis, we identified many potential cargoes of BmKinesin-1 in PSG, including fibroin-containing granules and exuperantia-associated ribonucleoprotein (RNP) complexes. Moreover, BmKinesin-13 overexpression disrupted the microtubule network in BmN cells, which is consistent with a role of Kinesin-13 in regulating microtubule dynamics in other organisms. On the basis of these results, we concluded that PSG might have advantages in elucidating mechanisms of intracellular transport in secretory tissues and could serve as a potential model for kinesin studies.展开更多
Histone acetylation is involved in chromatin structural remodeling and the regulation of gene expression, and it is important for the activation of defense-related gene expression in eukaryotes[1]. The silent informat...Histone acetylation is involved in chromatin structural remodeling and the regulation of gene expression, and it is important for the activation of defense-related gene expression in eukaryotes[1]. The silent information regulator 2(SIR2) family of proteins were initially described as nuclear proteins with histone deacetylase activity that causes chromatin compaction and gene silencing[2].展开更多
About 80% of plant viruses are transmitted by specific insect vectors, especiallyhemipterans with piercing-sucking mouthparts. Many virus-transmitting insectsare also important crop pests that cause considerable losse...About 80% of plant viruses are transmitted by specific insect vectors, especiallyhemipterans with piercing-sucking mouthparts. Many virus-transmitting insectsare also important crop pests that cause considerable losses in crop production.This review summarizes the latest research findings on the interactions betweenplant viruses and insect vectors and analyzes the key factors affecting insecttransmission of plant viruses from the perspectives of insect immunity, insectfeeding, and insect symbiotic microorganisms. Additionally, by referring to thelatest applications for blocking the transmission of animal viruses, potentialcontrol strategies to prevent the transmission of insect-vectored plant virusesusing RNAi technology, gene editing technology, and CRISPR/Cas9 + gene-driventechnology are discussed.展开更多
基金Acknowledgments We wish to thank Prof GZ Zhang and Prof ZF Zhang at the Sericultural Research Institute of the Chinese Academy of Agricultural Sciences for B. mori strain and silkworm artificial diet, respectively. This work was supported by the National Natural Science Foundation of China (30670659, 30771086, 30721064), the Major State Basic Research Development Program of China (973 Program) (2006CB500700, 2006CB910700, 2010CB833705), and the National High Technology Research and Development Program of China (863 Program) (2006AA10A119).
文摘Kinesins are microtubule-based motors involved in various intracellular transports. Neurons, flagellated cells, and pigment cells have been traditionally used as model systems to study the cellular functions of kinesins. Here, we report silkworm posterior silkgland (PSG), specialized cells with an extensive endomembrane system for intracellular transport and efficient secretion of fibroin, as a novel model for kinesin study. To investigate kinesindriven intracellular transport in PSG cells, we cloned five silkworm kinesin-like proteins (KLPs), BmKinesin-1, BmKinesin-6, BmKinesin-7, BmKinesin-13, and BmKinesin-14A. We determined their expression patterns by relative real-time PCR and western blotting. Immunofluorescence microscopy verified their colocalization with microtubules. By combining pull-down assays, LC-MS/MS, and western blotting analysis, we identified many potential cargoes of BmKinesin-1 in PSG, including fibroin-containing granules and exuperantia-associated ribonucleoprotein (RNP) complexes. Moreover, BmKinesin-13 overexpression disrupted the microtubule network in BmN cells, which is consistent with a role of Kinesin-13 in regulating microtubule dynamics in other organisms. On the basis of these results, we concluded that PSG might have advantages in elucidating mechanisms of intracellular transport in secretory tissues and could serve as a potential model for kinesin studies.
基金supported by the National Key Research and Development Program of China(2023YFD1400300)Zhejiang Provincial Natural Science Foundation of China(LY23C140006)+2 种基金National Natural Science Foundation of China(31901954)Ningbo Natural Science Foundation(2021J126,2023J382)China Agriculture Research System of MOF and MARA(CARS-03)。
文摘Histone acetylation is involved in chromatin structural remodeling and the regulation of gene expression, and it is important for the activation of defense-related gene expression in eukaryotes[1]. The silent information regulator 2(SIR2) family of proteins were initially described as nuclear proteins with histone deacetylase activity that causes chromatin compaction and gene silencing[2].
基金This study was supported by the National Natural Science Foundation of China(31801734)the National Key R&D Program of China(2016YFD0200804)the Ningbo Science and Technology Innovation 2025 Major Project(2019B10004).
文摘About 80% of plant viruses are transmitted by specific insect vectors, especiallyhemipterans with piercing-sucking mouthparts. Many virus-transmitting insectsare also important crop pests that cause considerable losses in crop production.This review summarizes the latest research findings on the interactions betweenplant viruses and insect vectors and analyzes the key factors affecting insecttransmission of plant viruses from the perspectives of insect immunity, insectfeeding, and insect symbiotic microorganisms. Additionally, by referring to thelatest applications for blocking the transmission of animal viruses, potentialcontrol strategies to prevent the transmission of insect-vectored plant virusesusing RNAi technology, gene editing technology, and CRISPR/Cas9 + gene-driventechnology are discussed.