The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods ...The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods are inadequate for collecting data on high-steep rock slopes in complex mountainous regions.This study establishes a high-resolution three-dimensional model of a rock slope using unmanned aerial vehicle(UAV)multi-angle nap-of-the-object photogrammetry to obtain edge feature points of fractures.Fracture opening morphology is characterized using coordinate projection and transformation.Fracture central axis is determined using vertical measuring lines,allowing for the interpretation of aperture of adaptive fracture shape.The feasibility and reliability of the new method are verified at a construction site of a railway in southeast Tibet,China.The study shows that the fracture aperture has a significant interval effect and size effect.The optimal sampling length for fractures is approximately 0.5e1 m,and the optimal aperture interpretation results can be achieved when the measuring line spacing is 1%of the sampling length.Tensile fractures in the study area generally have larger apertures than shear fractures,and their tendency to increase with slope height is also greater than that of shear fractures.The aperture of tensile fractures is generally positively correlated with their trace length,while the correlation between the aperture of shear fractures and their trace length appears to be weak.Fractures of different orientations exhibit certain differences in their distribution of aperture,but generally follow the forms of normal,log-normal,and gamma distributions.This study provides essential data support for rock and slope stability evaluation,which is of significant practical importance.展开更多
Historically,landslides have been the primary type of geological disaster worldwide.Generally,the stability of reservoir banks is primarily affected by rainfall and reservoir water level fluctuations.Moreover,the stab...Historically,landslides have been the primary type of geological disaster worldwide.Generally,the stability of reservoir banks is primarily affected by rainfall and reservoir water level fluctuations.Moreover,the stability of reservoir banks changes with the long-term dynamics of external disastercausing factors.Thus,assessing the time-varying reliability of reservoir landslides remains a challenge.In this paper,a machine learning(ML)based approach is proposed to analyze the long-term reliability of reservoir bank landslides in spatially variable soils through time series prediction.This study systematically investigated the prediction performances of three ML algorithms,i.e.multilayer perceptron(MLP),convolutional neural network(CNN),and long short-term memory(LSTM).Additionally,the effects of the data quantity and data ratio on the predictive power of deep learning models are considered.The results show that all three ML models can accurately depict the changes in the time-varying failure probability of reservoir landslides.The CNN model outperforms both the MLP and LSTM models in predicting the failure probability.Furthermore,selecting the right data ratio can improve the prediction accuracy of the failure probability obtained by ML models.展开更多
Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This st...Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This study presents a systematic outcrop research of fracture pattern variations in a complicated rock slope,and the qualitative and quantitative study of the complex phenomena impact on threedimensional(3D)discrete fracture network(DFN)modeling.As the studies of the outcrop fracture pattern have been so far focused on local variations,thus,we put forward a statistical analysis of global variations.The entire outcrop is partitioned into several subzones,and the subzone-scale variability of fracture geometric properties is analyzed(including the orientation,the density,and the trace length).The results reveal significant variations in fracture characteristics(such as the concentrative degree,the average orientation,the density,and the trace length)among different subzones.Moreover,the density of fracture sets,which is approximately parallel to the slope surface,exhibits a notably higher value compared to other fracture sets across all subzones.To improve the accuracy of the DFN modeling,the effects of three common phenomena resulting from vegetation and rockfalls are qualitatively analyzed and the corresponding quantitative data processing solutions are proposed.Subsequently,the 3D fracture geometric parameters are determined for different areas of the high-steep rock slope in terms of the subzone dimensions.The results show significant variations in the same set of 3D fracture parameters across different regions with density differing by up to tenfold and mean trace length exhibiting differences of 3e4 times.The study results present precise geological structural information,improve modeling accuracy,and provide practical solutions for addressing complex outcrop issues.展开更多
Intense precipitation infiltration and intricate excavation processes are crucial factors that impact the stability and security of towering and steep rock slopes within mining sites.The primary aim of this research w...Intense precipitation infiltration and intricate excavation processes are crucial factors that impact the stability and security of towering and steep rock slopes within mining sites.The primary aim of this research was to investigate the progression of cumulative failure within a cracked rock formation,considering the combined effects of precipitation and excavation activities.The study was conducted in the Huangniuqian eastern mining area of the Dexing Copper Mine in Jiangxi Province,China.An engineering geological investigation was conducted,a physical model experiment was performed,numerical calculations and theoretical analysis were conducted using the matrix discrete element method(Mat-DEM),and the deformation characteristics and the effect of the slope angle of a fractured rock mass under different scenarios were examined.The failure and instability mechanisms of the fractured rock mass under three slope angle models were analyzed.The experimental results indicate that as the slope angle increases,the combined effect of rainfall infiltration and excavation unloading is reduced.A novel approach to simulating unsaturated seepage in a rock mass,based on the van Genuchten model(VGM),has been developed.Compared to the vertical displacement observed in a similar physical experiment,the average relative errors associated with the slope angles of 45,50,and 55were 2.094%,1.916%,and 2.328%,respectively.Accordingly,the combined effect of rainfall and excavation was determined using the proposed method.Moreover,the accuracy of the numerical simulation was validated.The findings contribute to the seepage field in a meaningful way,offering insight that can inform and enhance existing methods and theories for research on the underlying mechanism of ultra-high and steep rock slope instability,which can inform the development of more effective risk management strategies.展开更多
In open pit mining,uncontrolled block instabilities have serious social,economic and regulatory consequences,such as casualties,disruption of operation and increased regulation difficulties.For this reason,bench face ...In open pit mining,uncontrolled block instabilities have serious social,economic and regulatory consequences,such as casualties,disruption of operation and increased regulation difficulties.For this reason,bench face angle,as one of the controlling parameters associated with block instabilities,should be carefully designed for sustainable mining.This study introduces a discrete fracture network(DFN)-based probabilistic block theory approach for the fast design of the bench face angle.A major advantage is the explicit incorporation of discontinuity size and spatial distribution in the procedure of key blocks testing.The proposed approach was applied to a granite mine in China.First,DFN models were generated from a multi-step modeling procedure to simulate the complex structural characteristics of pit slopes.Then,a modified key blocks searching method was applied to the slope faces modeled,and a cumulative probability of failure was obtained for each sector.Finally,a bench face angle was determined commensurate with an acceptable risk level of stability.The simulation results have shown that the number of hazardous traces exposed on the slope face can be significantly reduced when the suggested bench face angle is adopted,indicating an extremely low risk of uncontrolled block instabilities.展开更多
To better understand the failure behaviours and strength of bolt-reinforced blocky rocks,large scale extensive laboratory experiments are carried out on blocky rock-like specimens with and without rockbolt reinforceme...To better understand the failure behaviours and strength of bolt-reinforced blocky rocks,large scale extensive laboratory experiments are carried out on blocky rock-like specimens with and without rockbolt reinforcement.The results show that both shear failure and tensile failure along joint surfaces are observed but the shear failure is a main controlling factor for the peak strength of the rock mass with and without rockbolts.The rockbolts are necked and shear deformation simultaneously happens in bolt reinforced rock specimens.As the joint dip angle increases,the joint shear failure becomes more dominant.The number of rockbolts has a significant impact on the peak strain and uniaxial compressive strength(UCS),but little influence on the deformation modulus of the rock mass.Using the Winkler beam model to represent the rockbolt behaviours,an analytical model for the prediction of the strength of boltreinforced blocky rocks is proposed.Good agreement between the UCS values predicted by proposed model and obtained from experiments suggest an encouraging performance of the proposed model.In addition,the performance of the proposed model is further assessed using published results in the literature,indicating the proposed model can be used effectively in the prediction of UCS of bolt-reinforced blocky rocks.展开更多
When the geological environment of rock masses is disturbed,numerous non-persisting open joints can appear within it.It is crucial to investigate the effect of open joints on the mechanical properties of rock mass.How...When the geological environment of rock masses is disturbed,numerous non-persisting open joints can appear within it.It is crucial to investigate the effect of open joints on the mechanical properties of rock mass.However,it has been challenging to generate realistic open joints in traditional experimental tests and numerical simulations.This paper presents a novel solution to solve the problem.By utilizing the stochastic distribution of joints and an enhanced-fractal interpolation system(IFS)method,rough curves with any orientation can be generated.The Douglas-Peucker algorithm is then applied to simplify these curves by removing unnecessary points while preserving their fundamental shape.Subsequently,open joints are created by connecting points that move to both sides of rough curves based on the aperture distribution.Mesh modeling is performed to construct the final mesh model.Finally,the RB-DEM method is applied to transform the mesh model into a discrete element model containing geometric information about these open joints.Furthermore,this study explores the impacts of rough open joint orientation,aperture,and number on rock fracture mechanics.This method provides a realistic and effective approach for modeling and simulating these non-persisting open joints.展开更多
Quasi-NPR(negative Poisson’s ratio)steel is a new type of super bolt material with high strength,high ductility,and a micro-negative Poisson’s effect.This material overcomes the contrasting characteristics of the hi...Quasi-NPR(negative Poisson’s ratio)steel is a new type of super bolt material with high strength,high ductility,and a micro-negative Poisson’s effect.This material overcomes the contrasting characteristics of the high strength and high ductility of steel and it has significant energy-absorbing characteristics,which is of high value in deep rock and soil support engineering.However,research on the shear resistance of quasi-NPR steel has not been carried out.To study the shear performance of quasi-NPR steel bolted rock joints,indoor shear tests of bolted rock joints under different normal stress conditions were carried out.Q235 steel and#45 steel,two representative ordinary bolt steels,were set up as a control group for comparative tests to compare and analyze the shear strength,deformation and instability mode,shear energy absorption characteristics,and bolting contribution of different types of bolts.The results show that the jointed rock masses without bolt reinforcement undergo brittle failure under shear load,while the bolted jointed rock masses show obvious ductile failure characteristics.The shear deformation ca-pacity of quasi-NPR steel is more than 3.5 times that of Q235 steel and#45 steel.No fracture occurs in the quasi-NPR steel during large shear deformation and it can provide stable shear resistance.However,the other two types of control bolts become fractured under the same conditions.Quasi-NPR steel has significant energy-absorbing characteristics under shear load and has obvious advantages in terms of absorbing the energy released by shear deformation of jointed rock masses as compared with ordinary steel.In particular,the shear force plays a major role in resisting the shear deformation of Q235 steel and#45 steel,therefore,fracture failure occurs under small bolt deformation.However,the axial force of quasi-NPR steel can be fully exerted when resisting joint shear deformation;the steel itself does not break when large shear deformation occurs,and the supporting effect of the jointed rock mass is effectively guaranteed.展开更多
Through high-precision engraving,self-affine sandstone joint surfaces with various joint roughness coefficients(JRC=3.21e12.16)were replicated and the shear sliding tests under unloading normal stress were conducted r...Through high-precision engraving,self-affine sandstone joint surfaces with various joint roughness coefficients(JRC=3.21e12.16)were replicated and the shear sliding tests under unloading normal stress were conducted regarding various initial normal stresses(1e7 MPa)and numbers of shearing cycles(1 e5).The peak shear stress of fractures decreased with shear cycles due to progressively smooth surface morphologies,while increased with both JRC and initial normal stress and could be verified using the nonlinear Barton-Bandis failure criterion.The joint friction angle of fractures exponentially increased by 62.22%e64.87%with JRC while decreased by 22.1%e24.85%with shearing cycles.After unloading normal stress,the sliding initiation time of fractures increased with both JRC and initial normal stress due to more tortuous fracture morphologies and enhanced shearing resistance capacity.The surface resistance index(SRI)of fractures decreased by 4.35%e32.02%with increasing shearing cycles due to a more significant reduction of sliding initiation shear stress than that for sliding initiation normal stress,but increased by a factor of 0.41e1.64 with JRC.After sliding initiation,the shear displacement of fractures showed an increase in power function.By defining a sliding rate threshold of 5105 m/s,transition from“quasi-static”to“dynamic”sliding of fractures was identified,and the increase of sliding acceleration steepened with JRC while slowed down with shearing cycles.The normal displacement experienced a slight increase before shear sliding due to deformation recovery as the unloading stress was unloaded,and then enhanced shear dilation after sliding initiation due to climbing effects of surface asperities.Dilation was positively related to the shear sliding velocity of fractures.Wear characteristics of the fracture surfaces after shearing failure were evaluated using binary calculation,indicating an increasing shear area ratio by 45.24%e91.02%with normal stress.展开更多
Thermally-induced changes in the fracture properties of geological reservoir rocks can influence their stability,transport characteristics,and performance related to various deep subsurface energy projects.The modifie...Thermally-induced changes in the fracture properties of geological reservoir rocks can influence their stability,transport characteristics,and performance related to various deep subsurface energy projects.The modified maximum tangential stress(MMTS)criterion is a classical theory for predicting the fracture instability of rocks.However,there is a lack of research on the accuracy of MMTS theory when rocks are subjected to different temperatures.In this study,mechanical theoretical analysis and failure and fracture mechanics experiments of granite under the influence of temperatures ranging from 20℃to 600℃are carried out.The results showed that the theoretical estimated value of MMTS differs significantly from the experimental data at 20℃-600℃.The Keff/KIC ratio is less than the experimental test value due to the critical crack growth radius(rc)estimated by the conventional method being larger than the critical crack growth radius(rce)derived from the experimental data.Varied temperatures affect the fracture process zone size of fine-grained,compact granite,and the MMTS theoretical estimation results.Therefore,it is essential to modify the critical crack growth radius for MMTS theory to accurately predict the fracture characteristics of thermally damaged rocks.In addition,the variation of the rock’s me-chanical properties with temperature and its causes are obtained.Between 20℃and 600℃,the mode-Ⅰ,mode-Ⅱ,and mixed-mode(a-30℃and 45℃)fracture toughness and Brazilian splitting strength of the granite decrease by 80%and 73%,respectively.When the rock is heated above 400℃,its deterioration is mainly caused by a widening of its original cracks.展开更多
In recent years,there is a scenario in urban tunnel constructions to build super-large-span tunnels for traffic diversion and route optimization purposes.However,the increased size makes tunnel support more difficult....In recent years,there is a scenario in urban tunnel constructions to build super-large-span tunnels for traffic diversion and route optimization purposes.However,the increased size makes tunnel support more difficult.Unfortunately,there are few studies on the failure and support mechanism of the surrounding rocks in the excavation of supported tunnel,while most model tests of super-large-span tunnels focus on the failure characteristics of surrounding rocks in tunnel excavation without supports.Based on excavation compensation method(ECM),model tests of a super-large-span tunnel excavation by different anchor cable support methods in the initial support stage were carried out.The results indicate that during excavation of super-large-span tunnel,the stress and displacement of the shallow surrounding rocks decrease,following a step-shape pattern,and the tunnel failure is mainly concentrated on the vault and spandrel areas.Compared with conventional anchor cable supports,the NPR(negative Poisson’s ratio)anchor cable support is more suitable for the initial support stage of the super-large-span tunnels.The tunnel support theory,model test materials,methods,and the results obtained in this study could provide references for study of similar super-large-span tunnels。展开更多
Similar to hydraulic fracturing(HF), the coalescence and fracture of cracks are induced within a rock under the action of an ultrasonic field, known as ultrasonic fracturing(UF). Investigating UF is important in both ...Similar to hydraulic fracturing(HF), the coalescence and fracture of cracks are induced within a rock under the action of an ultrasonic field, known as ultrasonic fracturing(UF). Investigating UF is important in both hard rock drilling and oil and gas recovery. A three-dimensional internal laser-engraved crack(3D-ILC) method was introduced to prefabricate two parallel internal cracks within the samples without any damage to the surface. The samples were subjected to UF. The mechanism of UF was elucidated by analyzing the characteristics of fracture surfaces. The crack propagation path under different ultrasonic parameters was obtained by numerical simulation based on the Paris fatigue model and compared to the experimental results of UF. The results show that the 3D-ILC method is a powerful tool for UF research.Under the action of an ultrasonic field, the fracture surface shows the characteristics of beach marks and contains powder locally, indicating that the UF mechanism includes high-cycle fatigue fracture, shear and friction, and temperature load. The two internal cracks become close under UF. The numerical result obtained by the Paris fatigue model also shows the attraction of the two cracks, consistent with the test results. The 3D-ILC method provides a new tool for the experimental study of UF. Compared to the conventional numerical methods based on the analysis of stress-strain and plastic zone, numerical simulation can be a good alternative method to obtain the crack path under UF.展开更多
Traditional explosives have characteristics of high risk,large vibration,and poor directional fracturing.Consequently,an instantaneous expander with a single crack surface(IESCS),which is a novel nonexplosive directio...Traditional explosives have characteristics of high risk,large vibration,and poor directional fracturing.Consequently,an instantaneous expander with a single crack surface(IESCS),which is a novel nonexplosive directional rock-breaking technique,has been developed.The directional roof-cutting mechanism of the IESCS method,driven by high-pressure gas,was theoretically analyzed.Laboratory experiments and numerical simulations proved the directional slitting effect of the IESCS method to be excellent.Compared with shaped-charge blasting,the charge of IESCS was reduced by 8.9%,but the crack rate increased by 9%in field tests.After IESCS pre-splitting,the roof directionally collapsed along the cutting line,and the gangue filled the goaf.Moreover,the directional roof cutting by the IESCS could decrease roadway stress.The average pressure of hydraulic supports on the cutting side of the roof was 31%lower than that on the non-cutting side of the roof after pre-splitting.After the self-formed roadway constructed by the IESCS was stabilized,the final relative displacement of the roof and floor was 157.3 mm,meeting the required standard of the next working face.Thus,the IESCS was effectively applied to directional roof pre-splitting.The results demonstrate the promising potential of IESCS in the mining and geotechnical fields.展开更多
MXenes have attracted considerable attention owing to their versatile and excellent physicochemi‐cal properties.Especially,they have potential applications as robust support for single atom cata‐lysts.Here,quantum c...MXenes have attracted considerable attention owing to their versatile and excellent physicochemi‐cal properties.Especially,they have potential applications as robust support for single atom cata‐lysts.Here,quantum chemical studies with density functional theory are carried out to systemati‐cally investigate the geometries,stability,electronic properties of oxygen functionalized Ti_(2)C(Ti_(2)CO_(2))supported single‐atom catalysts M_(1)/Ti_(2)CO_(2)(M=Fe,Co,Ni,Cu Ru,Rh,Pd,Ag Os,Ir,Pt,Au).A new non‐noble metal SAC Fe_(1)/Ti_(2)CO_(2) has been found to show excellent catalytic performance for low‐temperature CO oxidation after screening the group 8‐11 transition metals.We find that O_(2) and CO adsorption on Fe_(1) atom of Fe_(1)/Ti_(2)CO_(2) is favorable.Accordingly,five possible mechanisms for CO oxidation on this catalyst are evaluated,including Eley‐Rideal,Langmuir‐Hinshelwood,Mars-van Krevelen,Termolecular Eley‐Rideal,and Termolecular Langmuir‐Hinshelwood(TLH)mechanisms.Based on the calculated reaction energies for different pathways,Fe_(1)/Ti_(2)CO_(2) shows excellent kinet‐ics for CO oxidation via TLH mechanism,with distinct low‐energy barrier(0.20 eV)for the rate‐determining step.These results demonstrate that Fe_(1)/Ti_(2)CO_(2) MXene is highly promising 2D materials for building robust non‐noble metal catalysts.展开更多
Heterogenization of organic-macrocyclic metal catalysts is one of the simplest and most efficient methods for effective separation of products and cyclic application of a catalyst.By using an environmentally friendly ...Heterogenization of organic-macrocyclic metal catalysts is one of the simplest and most efficient methods for effective separation of products and cyclic application of a catalyst.By using an environmentally friendly Mn-corrolazine catalyst as the building unit,which can directly oxidize organic substrates under oxygen atmosphere and mild conditions,we theoretically constructed a novel two-dimensional(2D)Mn-corrolazine nanocatalytic material with high catalytic activity.In this material,each Mn atom maintains its electronic configuration in the monomer and can directly activate O2 as the single-atom catalyst(SAC)center to form a radical-like[Mn]-O-O under mild visible-light irradiation conditions.The newly generated[Mn]–O–O can efficiently and selectively oxidize C–H bonds to form alcohol species through H-abstraction and the rebound reaction.Moreover,the catalytic reaction is easily regulated by an external electric field along its intrinsic Mn–O–O reaction axis.The current study provides a theoretical foundation for further experimental studies and practical applications of the Mn-corrolazine-based SAC.展开更多
Archaea have unique glycerol dialkyl glycerol tetraether(GDGT) lipids that can be used to develop paleotemperature proxies such as TEX86.This research is to validate proposed GDGT-proxies for paleotemperature determ...Archaea have unique glycerol dialkyl glycerol tetraether(GDGT) lipids that can be used to develop paleotemperature proxies such as TEX86.This research is to validate proposed GDGT-proxies for paleotemperature determination in the South China Sea(SCS).Samples were collected from core-top sediments (0-5 cm) in the northern SCS.Total lipids were extracted to obtain core GDGTs,which were identified and quantified using liquid chromatography-mass spectrometry(LC-MS).The abundance of isoprenoidal GDGTs(/GDGTs) ranged from 271.5 ng/g dry sediment to 1266.3 ng/g dry sediment,whereas the branched GDGTs(bGDGTs),supposedly derived from terrestrial sources,ranged from 22.2 ng/g dry sediment to 56.7 ng/g dry sediment.The TEX_(86)-derived sea surface temperatures ranged from 20.9℃in the coast(water depth 〈 160 m) to 27.9℃offshore(water depth 〉 1000 m).TEX86-derived temperatures near shore(〈 160 m water depth) averaged 23.1±2.5℃(n =4),which were close to the satellite-derived winter mean sea surface temperature(average 22.6±1.0℃,n = 4);whereas the TEX_(86)-derived temperatures offshore averaged 27.4±0.3℃(n = 7) and were consistent with the satellite mean annual sea surface temperature(average 26.8±0.4℃,n = 7).These results suggest that TEX_(86) may record the sea surface mean annual temperature in the open ocean,while it likely records winter sea surface temperature in the shallower water.展开更多
Single-atom catalysts(SACs)provide an oppor-tunity to elucidate the catalytic mechanism of complex reactions in heterogeneous catalysis.The low-temperature water-gas shift(WGS)reaction is an important industrial techn...Single-atom catalysts(SACs)provide an oppor-tunity to elucidate the catalytic mechanism of complex reactions in heterogeneous catalysis.The low-temperature water-gas shift(WGS)reaction is an important industrial technology to obtain high purity hydrogen.Herein,we study the catalytic activity of Pt1@Ti_(3)C_(2)T_(2)(T=O,S)SACs,where one subsurface Ti atom with three T vacancies in the functionalized Ti_(3)C_(2)T_(2)(T=O,S)MXene is substituted by one Pt atom,for the low-temperature show that Pt1@Ti_(3)C_(2)T_(2)provides an excellent platform for the WGS reaction by its bowl-shaped vacancy derived from the Pt1 single atom and three T defects surrounding it.Especially,Pt1@Ti_(3)C_(2)S_(2)SAC has higher catalytic performance for the WGS reaction,due to the weaker electronegativity of the S atom than the O atom,which significantly reduces the energy barrier of H*migration in the WGS reaction,which is often the rate-determining step.In the most favorable redox mechanism of the WGS reaction on Pt1@Ti_(3)C_(2)S_(2),the rate-determining step is the dissociation of OH*into O*and H*with the energy barrier as low as 1.12 eV.These results demonstrate that Pt1@Ti_(3)C_(2)S_(2)is promising in the application of MXenes for low-temperature WGS reactions.展开更多
Oxide-supported metal single-atom catalysts(SACs)have exhibited excellent catalytic performance for water-gas shift(WGS)reaction.Here,we report the single-atom catalyst Pt1/FeOx exhibits excellent medium temperature c...Oxide-supported metal single-atom catalysts(SACs)have exhibited excellent catalytic performance for water-gas shift(WGS)reaction.Here,we report the single-atom catalyst Pt1/FeOx exhibits excellent medium temperature catalytic performance for WGS reactions by the density functional theory(DFT)calculations and experimental results.The calculations indicate that H_(2)O molecules are easily dissociated at oxygen vacancies,and the formed*OH and*O are adsorbed on Pt1 single atoms and the adjacent O atoms,respectively.After studying four possible reaction mechanisms,it is found that the optimal WGS reaction pathway is proceeded along the carboxyl mechanism(pathway III),in which the formation of*COOH intermediates can promote the stability of Pt_(1)/FeO_(x) SAC and the easier occurrence of WGS reaction.The energy barrier of the rate-determining step during the entire reaction cycle is only 1.16 eV,showing the high activity for the medium temperature WGS reaction on Pt_(1)/FeO_(x) SAC,which was verified by experimental results.Moreover,the calculated turnover frequencies(TOFs)of CO_(2)and H_(2)formation on Pt1/FeOx at 610 K(337℃)can reach up to 1.14×10^(-3)s^(-1)·site^(-1)through carboxyl mechanism.In this work,we further expand the application potential of Pt1/FeOx SAC in WGS reaction.展开更多
Electrochemical conversion of CO_(2)into valuable hydrocarbon fuel is one of the key steps in solving carbon emission and energy issue.Herein,we report a non-noble metal catalyst,nickel single-atom catalyst(SAC)of Ni_...Electrochemical conversion of CO_(2)into valuable hydrocarbon fuel is one of the key steps in solving carbon emission and energy issue.Herein,we report a non-noble metal catalyst,nickel single-atom catalyst(SAC)of Ni_(1)/UiO-66-NH_(2),with high stability and selectivity for electrochemical reduction of CO_(2)to CH_(4).Based on ab initio molecular dynamics(AIMD)simulations,the CO_(2)molecule is at first reduced into CO_(2)-when stably adsorbed on a Ni single atom with the bidentate coordination mode.To evaluate its activity and selectivity for electrocatalytic reduction of CO_(2)to different products(HCOOH,CO,CH3OH,and CH_(4))on Ni_(1)/UiO-66-NH_(2),we have used density functional theory(DFT)to study different reaction pathways.The results show that CH_(4) is generated preferentially on Ni_(1)/UiO-66-NH_(2)and the calculated limiting potential is as low as-0.24 V.Moreover,the competitive hydrogen evolution reaction is unfavorable at the activation site of Ni_(1)/UiO-66-NH_(2)owing to the higher limiting potential of-0.56 V.Furthermore,the change of Ni single atom valence state plays an important role in promoting CO_(2)reduction to CH_(4).This work provides a theoretical foundation for further experimental studies and practical applications of metal-organic framework(UiO-66)-based SAC electrocatalysts with high activity and selectivity for the CO_(2)reduction reaction.展开更多
基金This work was supported by the National Nature Science Foundation of China(Grant Nos.42177139 and 41941017)the Natural Science Foundation Project of Jilin Province,China(Grant No.20230101088JC).The authors would like to thank the anonymous reviewers for their comments and suggestions.
文摘The aperture of natural rock fractures significantly affects the deformation and strength properties of rock masses,as well as the hydrodynamic properties of fractured rock masses.The conventional measurement methods are inadequate for collecting data on high-steep rock slopes in complex mountainous regions.This study establishes a high-resolution three-dimensional model of a rock slope using unmanned aerial vehicle(UAV)multi-angle nap-of-the-object photogrammetry to obtain edge feature points of fractures.Fracture opening morphology is characterized using coordinate projection and transformation.Fracture central axis is determined using vertical measuring lines,allowing for the interpretation of aperture of adaptive fracture shape.The feasibility and reliability of the new method are verified at a construction site of a railway in southeast Tibet,China.The study shows that the fracture aperture has a significant interval effect and size effect.The optimal sampling length for fractures is approximately 0.5e1 m,and the optimal aperture interpretation results can be achieved when the measuring line spacing is 1%of the sampling length.Tensile fractures in the study area generally have larger apertures than shear fractures,and their tendency to increase with slope height is also greater than that of shear fractures.The aperture of tensile fractures is generally positively correlated with their trace length,while the correlation between the aperture of shear fractures and their trace length appears to be weak.Fractures of different orientations exhibit certain differences in their distribution of aperture,but generally follow the forms of normal,log-normal,and gamma distributions.This study provides essential data support for rock and slope stability evaluation,which is of significant practical importance.
基金supported by the National Natural Science Foundation of China(Grant No.52308340)the Innovative Projects of Universities in Guangdong(Grant No.2022KTSCX208)Sichuan Transportation Science and Technology Project(Grant No.2018-ZL-01).
文摘Historically,landslides have been the primary type of geological disaster worldwide.Generally,the stability of reservoir banks is primarily affected by rainfall and reservoir water level fluctuations.Moreover,the stability of reservoir banks changes with the long-term dynamics of external disastercausing factors.Thus,assessing the time-varying reliability of reservoir landslides remains a challenge.In this paper,a machine learning(ML)based approach is proposed to analyze the long-term reliability of reservoir bank landslides in spatially variable soils through time series prediction.This study systematically investigated the prediction performances of three ML algorithms,i.e.multilayer perceptron(MLP),convolutional neural network(CNN),and long short-term memory(LSTM).Additionally,the effects of the data quantity and data ratio on the predictive power of deep learning models are considered.The results show that all three ML models can accurately depict the changes in the time-varying failure probability of reservoir landslides.The CNN model outperforms both the MLP and LSTM models in predicting the failure probability.Furthermore,selecting the right data ratio can improve the prediction accuracy of the failure probability obtained by ML models.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC3080200)the National Natural Science Foundation of China(Grant No.42022053)the China Postdoctoral Science Foundation(Grant No.2023M731264).
文摘Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This study presents a systematic outcrop research of fracture pattern variations in a complicated rock slope,and the qualitative and quantitative study of the complex phenomena impact on threedimensional(3D)discrete fracture network(DFN)modeling.As the studies of the outcrop fracture pattern have been so far focused on local variations,thus,we put forward a statistical analysis of global variations.The entire outcrop is partitioned into several subzones,and the subzone-scale variability of fracture geometric properties is analyzed(including the orientation,the density,and the trace length).The results reveal significant variations in fracture characteristics(such as the concentrative degree,the average orientation,the density,and the trace length)among different subzones.Moreover,the density of fracture sets,which is approximately parallel to the slope surface,exhibits a notably higher value compared to other fracture sets across all subzones.To improve the accuracy of the DFN modeling,the effects of three common phenomena resulting from vegetation and rockfalls are qualitatively analyzed and the corresponding quantitative data processing solutions are proposed.Subsequently,the 3D fracture geometric parameters are determined for different areas of the high-steep rock slope in terms of the subzone dimensions.The results show significant variations in the same set of 3D fracture parameters across different regions with density differing by up to tenfold and mean trace length exhibiting differences of 3e4 times.The study results present precise geological structural information,improve modeling accuracy,and provide practical solutions for addressing complex outcrop issues.
基金the Research Fund of National Natural Science Foundation of China(NSFC)(Grant Nos.42477142 and 42277154)the Project of Slope Safety Control and Disaster Prevention Technology Innovation team of“Youth Innovation Talent Introduction and Education Plan”of Shandong Colleges and Universities(Grant No.Lu Jiao Ke Han[2021]No.51)。
文摘Intense precipitation infiltration and intricate excavation processes are crucial factors that impact the stability and security of towering and steep rock slopes within mining sites.The primary aim of this research was to investigate the progression of cumulative failure within a cracked rock formation,considering the combined effects of precipitation and excavation activities.The study was conducted in the Huangniuqian eastern mining area of the Dexing Copper Mine in Jiangxi Province,China.An engineering geological investigation was conducted,a physical model experiment was performed,numerical calculations and theoretical analysis were conducted using the matrix discrete element method(Mat-DEM),and the deformation characteristics and the effect of the slope angle of a fractured rock mass under different scenarios were examined.The failure and instability mechanisms of the fractured rock mass under three slope angle models were analyzed.The experimental results indicate that as the slope angle increases,the combined effect of rainfall infiltration and excavation unloading is reduced.A novel approach to simulating unsaturated seepage in a rock mass,based on the van Genuchten model(VGM),has been developed.Compared to the vertical displacement observed in a similar physical experiment,the average relative errors associated with the slope angles of 45,50,and 55were 2.094%,1.916%,and 2.328%,respectively.Accordingly,the combined effect of rainfall and excavation was determined using the proposed method.Moreover,the accuracy of the numerical simulation was validated.The findings contribute to the seepage field in a meaningful way,offering insight that can inform and enhance existing methods and theories for research on the underlying mechanism of ultra-high and steep rock slope instability,which can inform the development of more effective risk management strategies.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.42102313 and 52104125)the Fundamental Research Funds for the Central Universities(Grant No.B240201094).
文摘In open pit mining,uncontrolled block instabilities have serious social,economic and regulatory consequences,such as casualties,disruption of operation and increased regulation difficulties.For this reason,bench face angle,as one of the controlling parameters associated with block instabilities,should be carefully designed for sustainable mining.This study introduces a discrete fracture network(DFN)-based probabilistic block theory approach for the fast design of the bench face angle.A major advantage is the explicit incorporation of discontinuity size and spatial distribution in the procedure of key blocks testing.The proposed approach was applied to a granite mine in China.First,DFN models were generated from a multi-step modeling procedure to simulate the complex structural characteristics of pit slopes.Then,a modified key blocks searching method was applied to the slope faces modeled,and a cumulative probability of failure was obtained for each sector.Finally,a bench face angle was determined commensurate with an acceptable risk level of stability.The simulation results have shown that the number of hazardous traces exposed on the slope face can be significantly reduced when the suggested bench face angle is adopted,indicating an extremely low risk of uncontrolled block instabilities.
基金supported by the National Key Research and Development Projects of China(No.2021YFB2600402)National Natural Science Foundation of China(Nos.52209148 and 52374119)+1 种基金the opening fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(No.SKLGME023023)the opening fund of Key Laboratory of Water Management and Water Security for Yellow River Basin,Ministry of Water Resources(No.2023-SYSJJ-02)。
文摘To better understand the failure behaviours and strength of bolt-reinforced blocky rocks,large scale extensive laboratory experiments are carried out on blocky rock-like specimens with and without rockbolt reinforcement.The results show that both shear failure and tensile failure along joint surfaces are observed but the shear failure is a main controlling factor for the peak strength of the rock mass with and without rockbolts.The rockbolts are necked and shear deformation simultaneously happens in bolt reinforced rock specimens.As the joint dip angle increases,the joint shear failure becomes more dominant.The number of rockbolts has a significant impact on the peak strain and uniaxial compressive strength(UCS),but little influence on the deformation modulus of the rock mass.Using the Winkler beam model to represent the rockbolt behaviours,an analytical model for the prediction of the strength of boltreinforced blocky rocks is proposed.Good agreement between the UCS values predicted by proposed model and obtained from experiments suggest an encouraging performance of the proposed model.In addition,the performance of the proposed model is further assessed using published results in the literature,indicating the proposed model can be used effectively in the prediction of UCS of bolt-reinforced blocky rocks.
基金supported by the National Key R&D Program of China (2018YFC0407004)the Fundamental Research Funds for the Central Universities (Nos.B200201059,2021FZZX001-14)the National Natural Science Foundation of China (Grant No.51709089)and 111 Project.
文摘When the geological environment of rock masses is disturbed,numerous non-persisting open joints can appear within it.It is crucial to investigate the effect of open joints on the mechanical properties of rock mass.However,it has been challenging to generate realistic open joints in traditional experimental tests and numerical simulations.This paper presents a novel solution to solve the problem.By utilizing the stochastic distribution of joints and an enhanced-fractal interpolation system(IFS)method,rough curves with any orientation can be generated.The Douglas-Peucker algorithm is then applied to simplify these curves by removing unnecessary points while preserving their fundamental shape.Subsequently,open joints are created by connecting points that move to both sides of rough curves based on the aperture distribution.Mesh modeling is performed to construct the final mesh model.Finally,the RB-DEM method is applied to transform the mesh model into a discrete element model containing geometric information about these open joints.Furthermore,this study explores the impacts of rough open joint orientation,aperture,and number on rock fracture mechanics.This method provides a realistic and effective approach for modeling and simulating these non-persisting open joints.
基金This study has been funded by the National Natural Science Foundation of China(Grant No.41941018)and the Second Tibetan Plateau Scientific Expedition and Research Grant(Grant No.2019QZKK0708).
文摘Quasi-NPR(negative Poisson’s ratio)steel is a new type of super bolt material with high strength,high ductility,and a micro-negative Poisson’s effect.This material overcomes the contrasting characteristics of the high strength and high ductility of steel and it has significant energy-absorbing characteristics,which is of high value in deep rock and soil support engineering.However,research on the shear resistance of quasi-NPR steel has not been carried out.To study the shear performance of quasi-NPR steel bolted rock joints,indoor shear tests of bolted rock joints under different normal stress conditions were carried out.Q235 steel and#45 steel,two representative ordinary bolt steels,were set up as a control group for comparative tests to compare and analyze the shear strength,deformation and instability mode,shear energy absorption characteristics,and bolting contribution of different types of bolts.The results show that the jointed rock masses without bolt reinforcement undergo brittle failure under shear load,while the bolted jointed rock masses show obvious ductile failure characteristics.The shear deformation ca-pacity of quasi-NPR steel is more than 3.5 times that of Q235 steel and#45 steel.No fracture occurs in the quasi-NPR steel during large shear deformation and it can provide stable shear resistance.However,the other two types of control bolts become fractured under the same conditions.Quasi-NPR steel has significant energy-absorbing characteristics under shear load and has obvious advantages in terms of absorbing the energy released by shear deformation of jointed rock masses as compared with ordinary steel.In particular,the shear force plays a major role in resisting the shear deformation of Q235 steel and#45 steel,therefore,fracture failure occurs under small bolt deformation.However,the axial force of quasi-NPR steel can be fully exerted when resisting joint shear deformation;the steel itself does not break when large shear deformation occurs,and the supporting effect of the jointed rock mass is effectively guaranteed.
基金support from the National Natural Science Foundation of China(Grant Nos.52174092 and 52104125)the Fundamental Research Funds for the Central Universities,China(Grant No.2022YCPY0202)is gratefully acknowledged.
文摘Through high-precision engraving,self-affine sandstone joint surfaces with various joint roughness coefficients(JRC=3.21e12.16)were replicated and the shear sliding tests under unloading normal stress were conducted regarding various initial normal stresses(1e7 MPa)and numbers of shearing cycles(1 e5).The peak shear stress of fractures decreased with shear cycles due to progressively smooth surface morphologies,while increased with both JRC and initial normal stress and could be verified using the nonlinear Barton-Bandis failure criterion.The joint friction angle of fractures exponentially increased by 62.22%e64.87%with JRC while decreased by 22.1%e24.85%with shearing cycles.After unloading normal stress,the sliding initiation time of fractures increased with both JRC and initial normal stress due to more tortuous fracture morphologies and enhanced shearing resistance capacity.The surface resistance index(SRI)of fractures decreased by 4.35%e32.02%with increasing shearing cycles due to a more significant reduction of sliding initiation shear stress than that for sliding initiation normal stress,but increased by a factor of 0.41e1.64 with JRC.After sliding initiation,the shear displacement of fractures showed an increase in power function.By defining a sliding rate threshold of 5105 m/s,transition from“quasi-static”to“dynamic”sliding of fractures was identified,and the increase of sliding acceleration steepened with JRC while slowed down with shearing cycles.The normal displacement experienced a slight increase before shear sliding due to deformation recovery as the unloading stress was unloaded,and then enhanced shear dilation after sliding initiation due to climbing effects of surface asperities.Dilation was positively related to the shear sliding velocity of fractures.Wear characteristics of the fracture surfaces after shearing failure were evaluated using binary calculation,indicating an increasing shear area ratio by 45.24%e91.02%with normal stress.
基金supported by the open fund of the Key Laboratory of Deep Earth Science and Engineering(Sichuan University),the Ministry of Education(Grant No.DESEYU202206)the Young Elite Scientists Sponsorship Program by CAST of China(Grant No.2021QNRC001)the Natural Science Foundation of Sichuan Province,China(Grant No.52104143),which are greatly appreciated。
文摘Thermally-induced changes in the fracture properties of geological reservoir rocks can influence their stability,transport characteristics,and performance related to various deep subsurface energy projects.The modified maximum tangential stress(MMTS)criterion is a classical theory for predicting the fracture instability of rocks.However,there is a lack of research on the accuracy of MMTS theory when rocks are subjected to different temperatures.In this study,mechanical theoretical analysis and failure and fracture mechanics experiments of granite under the influence of temperatures ranging from 20℃to 600℃are carried out.The results showed that the theoretical estimated value of MMTS differs significantly from the experimental data at 20℃-600℃.The Keff/KIC ratio is less than the experimental test value due to the critical crack growth radius(rc)estimated by the conventional method being larger than the critical crack growth radius(rce)derived from the experimental data.Varied temperatures affect the fracture process zone size of fine-grained,compact granite,and the MMTS theoretical estimation results.Therefore,it is essential to modify the critical crack growth radius for MMTS theory to accurately predict the fracture characteristics of thermally damaged rocks.In addition,the variation of the rock’s me-chanical properties with temperature and its causes are obtained.Between 20℃and 600℃,the mode-Ⅰ,mode-Ⅱ,and mixed-mode(a-30℃and 45℃)fracture toughness and Brazilian splitting strength of the granite decrease by 80%and 73%,respectively.When the rock is heated above 400℃,its deterioration is mainly caused by a widening of its original cracks.
基金supported by the Innovation Fund Research Project of State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology(Grant No.SKLGDUEK202201)the Foundation for the Opening of State Key Laboratory for Geomechanics and Deep Underground Engineering,China University of Mining and Technology(Grant No.SKLGDUEK2129)the Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics,Chinese Academy of Sciences(Grant No.Z020007)。
文摘In recent years,there is a scenario in urban tunnel constructions to build super-large-span tunnels for traffic diversion and route optimization purposes.However,the increased size makes tunnel support more difficult.Unfortunately,there are few studies on the failure and support mechanism of the surrounding rocks in the excavation of supported tunnel,while most model tests of super-large-span tunnels focus on the failure characteristics of surrounding rocks in tunnel excavation without supports.Based on excavation compensation method(ECM),model tests of a super-large-span tunnel excavation by different anchor cable support methods in the initial support stage were carried out.The results indicate that during excavation of super-large-span tunnel,the stress and displacement of the shallow surrounding rocks decrease,following a step-shape pattern,and the tunnel failure is mainly concentrated on the vault and spandrel areas.Compared with conventional anchor cable supports,the NPR(negative Poisson’s ratio)anchor cable support is more suitable for the initial support stage of the super-large-span tunnels.The tunnel support theory,model test materials,methods,and the results obtained in this study could provide references for study of similar super-large-span tunnels。
基金supported by the National Natural Science Foundation of China (Grant Nos. 52104125, U1765204 and 51739008)
文摘Similar to hydraulic fracturing(HF), the coalescence and fracture of cracks are induced within a rock under the action of an ultrasonic field, known as ultrasonic fracturing(UF). Investigating UF is important in both hard rock drilling and oil and gas recovery. A three-dimensional internal laser-engraved crack(3D-ILC) method was introduced to prefabricate two parallel internal cracks within the samples without any damage to the surface. The samples were subjected to UF. The mechanism of UF was elucidated by analyzing the characteristics of fracture surfaces. The crack propagation path under different ultrasonic parameters was obtained by numerical simulation based on the Paris fatigue model and compared to the experimental results of UF. The results show that the 3D-ILC method is a powerful tool for UF research.Under the action of an ultrasonic field, the fracture surface shows the characteristics of beach marks and contains powder locally, indicating that the UF mechanism includes high-cycle fatigue fracture, shear and friction, and temperature load. The two internal cracks become close under UF. The numerical result obtained by the Paris fatigue model also shows the attraction of the two cracks, consistent with the test results. The 3D-ILC method provides a new tool for the experimental study of UF. Compared to the conventional numerical methods based on the analysis of stress-strain and plastic zone, numerical simulation can be a good alternative method to obtain the crack path under UF.
基金This work was supported by the National Key Research and Development Program of China(No.2016YFC0600901)the National Natural Science Foundation of China(No.41941018)the Postgraduate Research&Practice Innovation Program of Jiangsu Province of China(No.KYCX21_2368).
文摘Traditional explosives have characteristics of high risk,large vibration,and poor directional fracturing.Consequently,an instantaneous expander with a single crack surface(IESCS),which is a novel nonexplosive directional rock-breaking technique,has been developed.The directional roof-cutting mechanism of the IESCS method,driven by high-pressure gas,was theoretically analyzed.Laboratory experiments and numerical simulations proved the directional slitting effect of the IESCS method to be excellent.Compared with shaped-charge blasting,the charge of IESCS was reduced by 8.9%,but the crack rate increased by 9%in field tests.After IESCS pre-splitting,the roof directionally collapsed along the cutting line,and the gangue filled the goaf.Moreover,the directional roof cutting by the IESCS could decrease roadway stress.The average pressure of hydraulic supports on the cutting side of the roof was 31%lower than that on the non-cutting side of the roof after pre-splitting.After the self-formed roadway constructed by the IESCS was stabilized,the final relative displacement of the roof and floor was 157.3 mm,meeting the required standard of the next working face.Thus,the IESCS was effectively applied to directional roof pre-splitting.The results demonstrate the promising potential of IESCS in the mining and geotechnical fields.
文摘MXenes have attracted considerable attention owing to their versatile and excellent physicochemi‐cal properties.Especially,they have potential applications as robust support for single atom cata‐lysts.Here,quantum chemical studies with density functional theory are carried out to systemati‐cally investigate the geometries,stability,electronic properties of oxygen functionalized Ti_(2)C(Ti_(2)CO_(2))supported single‐atom catalysts M_(1)/Ti_(2)CO_(2)(M=Fe,Co,Ni,Cu Ru,Rh,Pd,Ag Os,Ir,Pt,Au).A new non‐noble metal SAC Fe_(1)/Ti_(2)CO_(2) has been found to show excellent catalytic performance for low‐temperature CO oxidation after screening the group 8‐11 transition metals.We find that O_(2) and CO adsorption on Fe_(1) atom of Fe_(1)/Ti_(2)CO_(2) is favorable.Accordingly,five possible mechanisms for CO oxidation on this catalyst are evaluated,including Eley‐Rideal,Langmuir‐Hinshelwood,Mars-van Krevelen,Termolecular Eley‐Rideal,and Termolecular Langmuir‐Hinshelwood(TLH)mechanisms.Based on the calculated reaction energies for different pathways,Fe_(1)/Ti_(2)CO_(2) shows excellent kinet‐ics for CO oxidation via TLH mechanism,with distinct low‐energy barrier(0.20 eV)for the rate‐determining step.These results demonstrate that Fe_(1)/Ti_(2)CO_(2) MXene is highly promising 2D materials for building robust non‐noble metal catalysts.
文摘Heterogenization of organic-macrocyclic metal catalysts is one of the simplest and most efficient methods for effective separation of products and cyclic application of a catalyst.By using an environmentally friendly Mn-corrolazine catalyst as the building unit,which can directly oxidize organic substrates under oxygen atmosphere and mild conditions,we theoretically constructed a novel two-dimensional(2D)Mn-corrolazine nanocatalytic material with high catalytic activity.In this material,each Mn atom maintains its electronic configuration in the monomer and can directly activate O2 as the single-atom catalyst(SAC)center to form a radical-like[Mn]-O-O under mild visible-light irradiation conditions.The newly generated[Mn]–O–O can efficiently and selectively oxidize C–H bonds to form alcohol species through H-abstraction and the rebound reaction.Moreover,the catalytic reaction is easily regulated by an external electric field along its intrinsic Mn–O–O reaction axis.The current study provides a theoretical foundation for further experimental studies and practical applications of the Mn-corrolazine-based SAC.
基金supported by the South China Sea-Deep program of the National Science Foundation of China #91028005(CLZ)the State Key Laboratory of Marine Geology of Tongji UniversityHD was supported by NSFC(Grant Nos.91028011 and 41076091)
文摘Archaea have unique glycerol dialkyl glycerol tetraether(GDGT) lipids that can be used to develop paleotemperature proxies such as TEX86.This research is to validate proposed GDGT-proxies for paleotemperature determination in the South China Sea(SCS).Samples were collected from core-top sediments (0-5 cm) in the northern SCS.Total lipids were extracted to obtain core GDGTs,which were identified and quantified using liquid chromatography-mass spectrometry(LC-MS).The abundance of isoprenoidal GDGTs(/GDGTs) ranged from 271.5 ng/g dry sediment to 1266.3 ng/g dry sediment,whereas the branched GDGTs(bGDGTs),supposedly derived from terrestrial sources,ranged from 22.2 ng/g dry sediment to 56.7 ng/g dry sediment.The TEX_(86)-derived sea surface temperatures ranged from 20.9℃in the coast(water depth 〈 160 m) to 27.9℃offshore(water depth 〉 1000 m).TEX86-derived temperatures near shore(〈 160 m water depth) averaged 23.1±2.5℃(n =4),which were close to the satellite-derived winter mean sea surface temperature(average 22.6±1.0℃,n = 4);whereas the TEX_(86)-derived temperatures offshore averaged 27.4±0.3℃(n = 7) and were consistent with the satellite mean annual sea surface temperature(average 26.8±0.4℃,n = 7).These results suggest that TEX_(86) may record the sea surface mean annual temperature in the open ocean,while it likely records winter sea surface temperature in the shallower water.
基金We acknowledge the financial support from National Natural Science Foundation of China(21963005,22363001,21763006,and 22033005)the NSFC Center for Single-Atom Catalysis(22388102)+2 种基金the National Key R&D Project(2022YFA1503900 and 2022YFA1503000)the Natural Science Special Foundation of Guizhou University(No.202140)Guangdong Provincial Key Laboratory of Catalysis(No.2020B121201002).The calculations were performed using supercomputers at Shanghai Supercomputing Center and at the Center for Computational Science and Engineering of SUSTech.
文摘Single-atom catalysts(SACs)provide an oppor-tunity to elucidate the catalytic mechanism of complex reactions in heterogeneous catalysis.The low-temperature water-gas shift(WGS)reaction is an important industrial technology to obtain high purity hydrogen.Herein,we study the catalytic activity of Pt1@Ti_(3)C_(2)T_(2)(T=O,S)SACs,where one subsurface Ti atom with three T vacancies in the functionalized Ti_(3)C_(2)T_(2)(T=O,S)MXene is substituted by one Pt atom,for the low-temperature show that Pt1@Ti_(3)C_(2)T_(2)provides an excellent platform for the WGS reaction by its bowl-shaped vacancy derived from the Pt1 single atom and three T defects surrounding it.Especially,Pt1@Ti_(3)C_(2)S_(2)SAC has higher catalytic performance for the WGS reaction,due to the weaker electronegativity of the S atom than the O atom,which significantly reduces the energy barrier of H*migration in the WGS reaction,which is often the rate-determining step.In the most favorable redox mechanism of the WGS reaction on Pt1@Ti_(3)C_(2)S_(2),the rate-determining step is the dissociation of OH*into O*and H*with the energy barrier as low as 1.12 eV.These results demonstrate that Pt1@Ti_(3)C_(2)S_(2)is promising in the application of MXenes for low-temperature WGS reactions.
基金the financial support from the National Natural Science Foundation of China(NSFC,Nos.22363001 and 21963005)the NSFC Center for Single-Atom Catalysis(No.22388102)+1 种基金the National Key Research and Development Program of China(No.2022YFA1503900)the Natural Science Special Foundation of Guizhou University(No.202140).
文摘Oxide-supported metal single-atom catalysts(SACs)have exhibited excellent catalytic performance for water-gas shift(WGS)reaction.Here,we report the single-atom catalyst Pt1/FeOx exhibits excellent medium temperature catalytic performance for WGS reactions by the density functional theory(DFT)calculations and experimental results.The calculations indicate that H_(2)O molecules are easily dissociated at oxygen vacancies,and the formed*OH and*O are adsorbed on Pt1 single atoms and the adjacent O atoms,respectively.After studying four possible reaction mechanisms,it is found that the optimal WGS reaction pathway is proceeded along the carboxyl mechanism(pathway III),in which the formation of*COOH intermediates can promote the stability of Pt_(1)/FeO_(x) SAC and the easier occurrence of WGS reaction.The energy barrier of the rate-determining step during the entire reaction cycle is only 1.16 eV,showing the high activity for the medium temperature WGS reaction on Pt_(1)/FeO_(x) SAC,which was verified by experimental results.Moreover,the calculated turnover frequencies(TOFs)of CO_(2)and H_(2)formation on Pt1/FeOx at 610 K(337℃)can reach up to 1.14×10^(-3)s^(-1)·site^(-1)through carboxyl mechanism.In this work,we further expand the application potential of Pt1/FeOx SAC in WGS reaction.
基金This work was supported by the National Key Research and Development Project(Nos.2022YFA1503900 and 2022YFA1503000)the National Natural Science Foundation of China(Nos.22033005 and 21963005)+2 种基金the Natural Science Special Foundation of Guizhou University(No.202140)the Guangdong Provincial Key Laboratory of Catalysis(No.2020B121201002)The calculations were performed using supercomputers at the Center for Computational Science and Engineering of SUSTech and Shanghai Supercomputing Center.
文摘Electrochemical conversion of CO_(2)into valuable hydrocarbon fuel is one of the key steps in solving carbon emission and energy issue.Herein,we report a non-noble metal catalyst,nickel single-atom catalyst(SAC)of Ni_(1)/UiO-66-NH_(2),with high stability and selectivity for electrochemical reduction of CO_(2)to CH_(4).Based on ab initio molecular dynamics(AIMD)simulations,the CO_(2)molecule is at first reduced into CO_(2)-when stably adsorbed on a Ni single atom with the bidentate coordination mode.To evaluate its activity and selectivity for electrocatalytic reduction of CO_(2)to different products(HCOOH,CO,CH3OH,and CH_(4))on Ni_(1)/UiO-66-NH_(2),we have used density functional theory(DFT)to study different reaction pathways.The results show that CH_(4) is generated preferentially on Ni_(1)/UiO-66-NH_(2)and the calculated limiting potential is as low as-0.24 V.Moreover,the competitive hydrogen evolution reaction is unfavorable at the activation site of Ni_(1)/UiO-66-NH_(2)owing to the higher limiting potential of-0.56 V.Furthermore,the change of Ni single atom valence state plays an important role in promoting CO_(2)reduction to CH_(4).This work provides a theoretical foundation for further experimental studies and practical applications of metal-organic framework(UiO-66)-based SAC electrocatalysts with high activity and selectivity for the CO_(2)reduction reaction.