The ability to overcome the negative effects,induced by obstacles and turbulent atmosphere,is a core challenge of long-distance information transmission,and it is of great significance in free-space optical communicat...The ability to overcome the negative effects,induced by obstacles and turbulent atmosphere,is a core challenge of long-distance information transmission,and it is of great significance in free-space optical communication.The spatial-coherence structure,that characterizes partially coherent fields,provides a new degree of freedom for carrying information.However,due to the influence of the complex transmission environment,the spatial-coherence structure is severely damaged during the propagation path,which undoubtedly limits its ability to transmit information.Here,we realize the robust far-field orbital angular momentum(OAM)transmission and detection by modulating the spatial-coherence structure of a partially coherent vortex beam with the help of the cross-phase.The cross-phase enables the OAM information,quantified by the topological charge,hidden in the spatial-coherence structure can be stably transmitted to the far field and can resist the influence of obstructions and turbulence within the communication link.This is due to the self-reconstruction property of the spatial-coherence structure embedded with the cross-phase.We demonstrate experimentally that the topological charge information can be recognized well by measuring the spatial-coherence structure in the far field,exhibiting a set of distinct and separated dark rings even under amplitude and phase perturbations.Our findings open a door for robust optical signal transmission through the complex environment and may find application in optical communication through a turbulent atmosphere.展开更多
The optical coherence structures of random optical fields can determine beam propagation behavior,light–matter interactions,etc.Their performance makes a light beam robust against turbulence,scattering,and distortion...The optical coherence structures of random optical fields can determine beam propagation behavior,light–matter interactions,etc.Their performance makes a light beam robust against turbulence,scattering,and distortion.Recently,we proposed optical coherence encryption and robust far-field optical imaging techniques.All related applications place a high demand on precision in the experimental measurements of complex optical coherence structures,including their real and imaginary parts.Past studies on these measurements have mainly adopted theoretical mathematical approximations,limited to Gaussian statistic involving speckle statistic(time-consuming),or used complicated and delicate optical systems in the laboratory.In this study,we provide:a robust,convenient,and fast protocol to measure the optical coherence structures of random optical fields via generalized Arago(or Poisson)spot experiments with rigorous mathematical solutions.Our proposal only requires to capture the intensity thrice,and is applicable to any optical coherence structures,regardless of their type or optical statistics.The theoretical and experimental results demonstrated that the real and imaginary parts of the structures could be simultaneously recovered with high precision.We believe that such a protocol can be widely employed in phase measurement,optical imaging,and image transfer.展开更多
The degree of coherence(DOC)function that characterizes the second-order correlations at any two points in a light field is shown to provide a new degree of freedom for carrying information.As a rule,the DOC varies al...The degree of coherence(DOC)function that characterizes the second-order correlations at any two points in a light field is shown to provide a new degree of freedom for carrying information.As a rule,the DOC varies along the beam propagation path,preventing from the efficient information recovery.In this paper,we report that when a partially coher-ent beam carrying a cross phase propagates in free space,in a paraxial optical system or in a turbulent medium,the modulus of the far-field(focal plane)DOC acquires the same value as it has in the source plane.This unique propaga-tion feature is employed in a novel protocol for far-field imaging via the DOC,applicable to transmission in both free-space and turbulence.The advantages of the proposed approach are the confidentiality and resistance to turbulence,as well as the weaker requirement for the beam alignment accuracy.We demonstrate the feasibility and the robustness of the far-field imaging via the DOC in the turbulent media through both the experiment and the numerical simulations.Our findings have potential applications in optical imaging and remote sensing in natural environments,in the presence of op-tical turbulence.展开更多
We derive theoretically and verify experimentally a concise general expression for the normalized intensity correlations(IC)of partially coherent light in a weak atmospheric turbulence in the fast detector measurement...We derive theoretically and verify experimentally a concise general expression for the normalized intensity correlations(IC)of partially coherent light in a weak atmospheric turbulence in the fast detector measurement regime.The derived relation reveals that the medium turbulence acts,in general,as an additional noise source enhancing the IC of partially coherent beams.The maximum of the beam IC is,in general,enhanced,causing the fields to exhibit super-Gaussian statistics.On the other hand,the relation indicates that turbulence-induced noise is negligible for sufficiently low coherence light,which reveals the condition for the turbulence-free correlation imaging.展开更多
We suggest tailoring of the illumination's complex degree of coherence for imaging specific two-and three-point objects with resolution far exceeding the Rayleigh limit.We first derive a formula for the image inte...We suggest tailoring of the illumination's complex degree of coherence for imaging specific two-and three-point objects with resolution far exceeding the Rayleigh limit.We first derive a formula for the image intensity via the pseudo-mode decomposition and the fast Fourier transform valid for any partially coherent illumination(Schell-like,non-uniformly correlated,twisted)and then show how it can be used for numerical image manipulations.Further,for Schell-model sources,we show the improvement of the two-and three-point resolution to 20%and 40%of the classic Rayleigh distance,respectively.展开更多
基金National Key Research and Development Program of China (2022YFA1404800,2019YFA0705000)National Natural Science Foundation of China (12104264,12192254,92250304,and 12374311)+2 种基金China Postdoctoral Science Foundation (2022T150392)Natural Science Foundation of Shandong Province (ZR2021QA014 and ZR2023YQ006)Qingchuang Science and Technology Plan of Shandong Province (2022KJ246).
文摘The ability to overcome the negative effects,induced by obstacles and turbulent atmosphere,is a core challenge of long-distance information transmission,and it is of great significance in free-space optical communication.The spatial-coherence structure,that characterizes partially coherent fields,provides a new degree of freedom for carrying information.However,due to the influence of the complex transmission environment,the spatial-coherence structure is severely damaged during the propagation path,which undoubtedly limits its ability to transmit information.Here,we realize the robust far-field orbital angular momentum(OAM)transmission and detection by modulating the spatial-coherence structure of a partially coherent vortex beam with the help of the cross-phase.The cross-phase enables the OAM information,quantified by the topological charge,hidden in the spatial-coherence structure can be stably transmitted to the far field and can resist the influence of obstructions and turbulence within the communication link.This is due to the self-reconstruction property of the spatial-coherence structure embedded with the cross-phase.We demonstrate experimentally that the topological charge information can be recognized well by measuring the spatial-coherence structure in the far field,exhibiting a set of distinct and separated dark rings even under amplitude and phase perturbations.Our findings open a door for robust optical signal transmission through the complex environment and may find application in optical communication through a turbulent atmosphere.
基金This work was supported by the National Key Research and Development Program of China(2022YFA1404800,2019YFA0705000)National Natural Science Foundation of China(11974218,12004220,12104264,12192254,92250304)+2 种基金Regional Science and Technology Development Project of the Central Government(YDZX20203700001766)China Postdoctoral Science Foundation(2022T150392)the Natural Science Foundation of Shandong Province(ZR2021QA014,ZR2021ZD02).
文摘The optical coherence structures of random optical fields can determine beam propagation behavior,light–matter interactions,etc.Their performance makes a light beam robust against turbulence,scattering,and distortion.Recently,we proposed optical coherence encryption and robust far-field optical imaging techniques.All related applications place a high demand on precision in the experimental measurements of complex optical coherence structures,including their real and imaginary parts.Past studies on these measurements have mainly adopted theoretical mathematical approximations,limited to Gaussian statistic involving speckle statistic(time-consuming),or used complicated and delicate optical systems in the laboratory.In this study,we provide:a robust,convenient,and fast protocol to measure the optical coherence structures of random optical fields via generalized Arago(or Poisson)spot experiments with rigorous mathematical solutions.Our proposal only requires to capture the intensity thrice,and is applicable to any optical coherence structures,regardless of their type or optical statistics.The theoretical and experimental results demonstrated that the real and imaginary parts of the structures could be simultaneously recovered with high precision.We believe that such a protocol can be widely employed in phase measurement,optical imaging,and image transfer.
文摘The degree of coherence(DOC)function that characterizes the second-order correlations at any two points in a light field is shown to provide a new degree of freedom for carrying information.As a rule,the DOC varies along the beam propagation path,preventing from the efficient information recovery.In this paper,we report that when a partially coher-ent beam carrying a cross phase propagates in free space,in a paraxial optical system or in a turbulent medium,the modulus of the far-field(focal plane)DOC acquires the same value as it has in the source plane.This unique propaga-tion feature is employed in a novel protocol for far-field imaging via the DOC,applicable to transmission in both free-space and turbulence.The advantages of the proposed approach are the confidentiality and resistance to turbulence,as well as the weaker requirement for the beam alignment accuracy.We demonstrate the feasibility and the robustness of the far-field imaging via the DOC in the turbulent media through both the experiment and the numerical simulations.Our findings have potential applications in optical imaging and remote sensing in natural environments,in the presence of op-tical turbulence.
基金National Natural Science Foundation of China(Grant Nos.11525418,91750201,11874046,11974218,11904247,and 11947239)the National Key Research and Development Project of China(Grant No.2019YFA0705000),Innovation Group of Jinan,China(Grant No.2018GXRC010)+3 种基金Natural Science Foundation of the Jiangsu Higher Education Institutions of China(Grant No.19KJB140017)China Postdoctoral Science Foundation(Grant No.2019M661915)Natural Science Foundation of Shandong Province,China(Grant No.ZR2019QA004)Priority Academic Program Development of Jiangsu Higher Education Institutions,China,Qing Lan Project of Jiangsu Province,China,and Natural Sciences and Engineering Research Council of Canada(Grant No.RGPIN-2018-05497).
文摘We derive theoretically and verify experimentally a concise general expression for the normalized intensity correlations(IC)of partially coherent light in a weak atmospheric turbulence in the fast detector measurement regime.The derived relation reveals that the medium turbulence acts,in general,as an additional noise source enhancing the IC of partially coherent beams.The maximum of the beam IC is,in general,enhanced,causing the fields to exhibit super-Gaussian statistics.On the other hand,the relation indicates that turbulence-induced noise is negligible for sufficiently low coherence light,which reveals the condition for the turbulence-free correlation imaging.
基金the National Key Research and Development Program of China(No.2019YFA0705000)the National Natural Science Foundation of China(Nos.11525418,11874046,11947239,11974218,and 91750201)+1 种基金theInnovation Group of Jinan(No.2018GXRC010)the China PostdoctoralScience Foundation(No.2019M662424)。
文摘We suggest tailoring of the illumination's complex degree of coherence for imaging specific two-and three-point objects with resolution far exceeding the Rayleigh limit.We first derive a formula for the image intensity via the pseudo-mode decomposition and the fast Fourier transform valid for any partially coherent illumination(Schell-like,non-uniformly correlated,twisted)and then show how it can be used for numerical image manipulations.Further,for Schell-model sources,we show the improvement of the two-and three-point resolution to 20%and 40%of the classic Rayleigh distance,respectively.