Piezoelectric semiconductors(PSs)possess both semiconducting properties and piezoelectric coupling effects,making them optimal building blocks for semiconductor devices.PS fiber-like structures have wide applications ...Piezoelectric semiconductors(PSs)possess both semiconducting properties and piezoelectric coupling effects,making them optimal building blocks for semiconductor devices.PS fiber-like structures have wide applications in multi-functional semiconductor devices.In this paper,a one-dimensional(1D)theoretical model is established to describe the piezotronic responses of a PS fiber under gradient temperature changes.The theoretical model aims to explain the mechanism behind the resistance change caused by such gradient temperature changes.Numerical results demonstrate that a gradient temperature change significantly affects the physical fields within the PS fiber,and can induce changes in its surface resistance.It provides important theoretical guidance on the development of piezotronic devices that are sensitive to temperature effects.展开更多
This study aimed to identify the optimal neural progenitor cell transplantation time for spinal cord injury in rats via the subarachnoid space. Cultured neural progenitor cells from 14-day embryonic rats, constitutive...This study aimed to identify the optimal neural progenitor cell transplantation time for spinal cord injury in rats via the subarachnoid space. Cultured neural progenitor cells from 14-day embryonic rats, constitutively expressing enhanced green fluorescence protein, or media alone, were injected into the subarachnoid space of adult rats at 1 hour (acute stage), 7 days (subacute stage) and 28 days (chronic stage) after contusive spinal cord injury. Results showed that grafted neural progenitor cells migrated and aggregated around the blood vessels of the injured region, and infiltrated the spinal cord parenchyma along the tissue spaces in the acute stage transplantation group. However, this was not observed in subacute and chronic stage transplantation groups. 04- and glial fibrillary acidic protein-positive cells, representing oligodendrocytes and astrocytes respectively, were detected in the core of the grafted cluster attached to the cauda equina pia surface in the chronic stage transplantation group 8 weeks after transplantation. Both acute and subacute stage transplantation groups were negative for 04 and glial fibrillary acidic protein cells. Basso, Beattie and Bresnahan scale score comparisons indicated that rat hind limb locomotor activity showed better recovery after acute stage transplantation than after subacute and chronic transplantation. Our experimental findings suggest that the subarachnoid route could be useful for transplantation of neural progenitor cells at the acute stage of spinal cord injury. Although grafted cells survived only for a short time and did not differentiate into astrocytes or neurons, they were able to reach the parenchyma of the injured spinal cord and improve neurological function in rats. Transplantation efficacy was enhanced at the acute stage in comparison with subacute and chronic stages.展开更多
Anthocyanins play vital roles in plant stress tolerance and growth regulation.Previously,we reported that the photomorphogenesis-related transcription factor SlBBX20 regulates anthocyanin accumulation in tomato.Howeve...Anthocyanins play vital roles in plant stress tolerance and growth regulation.Previously,we reported that the photomorphogenesis-related transcription factor SlBBX20 regulates anthocyanin accumulation in tomato.However,the underlying mechanism remains unclear.Here,we showed that SlBBX20 promotes anthocyanin biosynthesis by binding the promoter of the anthocyanin biosynthesis gene SlDFR,suggesting that SlBBX20 directly activates anthocyanin biosynthesis genes.Furthermore,we found by yeast two-hybrid screening that SlBBX20 interacts with the COP9 signalosome subunit SlCSN5-2,and the interaction was confirmed by bimolecular fluorescence complementation and coimmunoprecipitation assays.SlCSN5 gene silencing led to anthocyanin hyperaccumulation in the transgenic tomato calli and shoots,and SlCSN5-2 overexpression decreased anthocyanin accumulation,suggesting thSlCSN5-2 enhanced the ubiquitination of SlBBX20 and promoted the degradation of SlBBX20 in vivo.Consistently,silencing the SlCSN5-2 homolog in tobacco significantly increased the accumulation of the SlBBX20 protein.Since SlBBX20 is a vital regulator of photomorphogenesis,the SlBBX20-SlCSN5-2 module may represent a novel regulatory pathway in light-induced anthocyanin biosynthesis.展开更多
Nanocrystalline nickel zinc ferrite powders (Ni=Zn1-xFe2O4, A for x=0, B for x=0.2, C for x=0.5, D for x= 0.8 and E for x= 1) were synthesized by polyacrylamide gel method. X-ray diffraction (XRD), transmission el...Nanocrystalline nickel zinc ferrite powders (Ni=Zn1-xFe2O4, A for x=0, B for x=0.2, C for x=0.5, D for x= 0.8 and E for x= 1) were synthesized by polyacrylamide gel method. X-ray diffraction (XRD), transmission electron microscopy (TEM) and wave-guide were used to characterize the composition. The XRD results show that the dried gel powders are amorphous, and the characteristic peaks of the spinel Ni0.5Zn0.5Fe2O4 appear after the gel is calcined at 400℃ for 1 h. When the calcining temperatures are 600 and 800℃, the average grain sizes are identified by TEM to be 10 and 30 nm, respectively. The NixZn1-xFe2O4 powders have both dielectric loss and magnetic loss in the frequency range of 8.2-11.0GHz. With the increase of Ni^2+ ions content, the dielectric parameters (ε′) and permeability (u′) of the NixZn1-xFe2O4 powders decrease while the dielectric loss (ε″), magnetic loss (u″) and the reflection loss increase.展开更多
Objective:Acute myeloid leukemia(AML)is primarily a malignant disorder affecting the elderly.We aimed to compare the outcomes of different treatment patterns in elderly AML patients and to propose a prognostic scoring...Objective:Acute myeloid leukemia(AML)is primarily a malignant disorder affecting the elderly.We aimed to compare the outcomes of different treatment patterns in elderly AML patients and to propose a prognostic scoring system that could predict survival and aid therapeutic decisions.Methods:Patients aged≥60 years who had been diagnosed with AML at 7 hospitals in China were enrolled(n=228).Treatment patterns included standard chemotherapy,low intensity therapy,and best supportive care(BSC).Results:The early mortality rates were 31%,6.8%,and 6.3%for the BSC,low intensity therapy,and standard chemotherapy groups,respectively.The complete remission rate of the standard chemotherapy group was higher than that of the low intensity therapy group.The median overall survival(OS)was 561 days and 222 days for the standard chemotherapy and low intensity therapy groups,respectively,and were both longer than that of the BSC group(86 days).Based on multivariate analyses,we defined a prognostic scoring system that enabled classification of patients into 3 risk groups,in an attempt to predict the OS of patients receiving chemotherapies and low intensity therapies.Low and intermediate risk patients benefited more from standard chemotherapies than from low intensity therapies.However,the median OS was comparable between standard chemotherapies and low intensity therapies in high risk patients.Conclusions:Our prognostic scoring system could predict survival and help select appropriate therapies for elderly AML patients.Standard chemotherapy is important for elderly AML patients,particularly for those categorized into low and intermediate risk groups.展开更多
A theoretical model is developed for predicting both conduction and diffusion in thin-film ionic conductors or cables. With the linearized Poisson-Nernst-Planck(PNP)theory, the two-dimensional(2D) equations for thin i...A theoretical model is developed for predicting both conduction and diffusion in thin-film ionic conductors or cables. With the linearized Poisson-Nernst-Planck(PNP)theory, the two-dimensional(2D) equations for thin ionic conductor films are obtained from the three-dimensional(3D) equations by power series expansions in the film thickness coordinate, retaining the lower-order equations. The thin-film equations for ionic conductors are combined with similar equations for one thin dielectric film to derive the 2D equations of thin sandwich films composed of a dielectric layer and two ionic conductor layers. A sandwich film in the literature, as an ionic cable, is analyzed as an example of the equations obtained in this paper. The numerical results show the effect of diffusion in addition to the conduction treated in the literature. The obtained theoretical model including both conduction and diffusion phenomena can be used to investigate the performance of ionic-conductor devices with any frequency.展开更多
Based on the three-dimensional(3D)basic equations of piezoelectric semiconductors(PSs),we establish a two-dimensional(2D)deformation-polarization-carrier coupling bending model for PS structures,taking flexoelectricit...Based on the three-dimensional(3D)basic equations of piezoelectric semiconductors(PSs),we establish a two-dimensional(2D)deformation-polarization-carrier coupling bending model for PS structures,taking flexoelectricity into consideration.The analytical solutions to classical flexure of a clamped circular PS thin plate are derived.With the derived analytical model,we numerically investigate the distributions of electromechanical fields and the concentration of electrons in the circular PS thin plate under an upward concentrated force.The effect of flexoelectricity on the multi-field coupling responses of the circular PS plate is studied.The obtained results provide theoretical guidance for the design of novel PS devices.展开更多
Piezoelectric semiconductors(PSs)have widespread applications in semiconductor devices due to the coexistence of piezoelec-tricity and semiconducting properties.It is very important to conduct a theoretical analysis o...Piezoelectric semiconductors(PSs)have widespread applications in semiconductor devices due to the coexistence of piezoelec-tricity and semiconducting properties.It is very important to conduct a theoretical analysis of PS structures.However,the present of nonlinearity in the partial differential equations(PDEs)that describe those multi-feld coupling mechanical behaviors of PSs poses a significant mathematical challenge when studying these PS structures.In this paper,we present a novel approach based on machine learning for solving multi-field coupling problems in PS structures.A physics-informed neural networks(PINNs)is constructed for predicting the multi-field coupling behaviors of PS rods with extensional deforma-tion.By utilizing the proposed PINNs,we evaluate the multi-field coupling responses of a ZnO rod under static and dynamic axial forces.Numerical results demonstrate that the proposed PINNs exhibit high accuracy in solving both static and dynamic problems associated with Ps structures.It provides an effective approach to predicting the nonlinear multi-feld coupling phe-nomena in PS structures.展开更多
Piezoelectric semiconductors(PSs),such as ZnO and GaN,known as the third-generation semiconductors,have promising applications in electronic and optoelectronic devices due to the coexistence and interaction of piezoel...Piezoelectric semiconductors(PSs),such as ZnO and GaN,known as the third-generation semiconductors,have promising applications in electronic and optoelectronic devices due to the coexistence and interaction of piezoelectricity and semiconductor properties.Theoretical modeling of PS structures under external loads,such as thermal and mechanical loads,plays a crucial role in the design of PS devices.In this work,we propose a nonlinear fully coupling theoretical model and investigate the multi-field coupling behaviors of PS structures and PN junctions under thermal and mechanical loads,considering physical and geometric nonlinearities.The electromechanical and semiconducting behaviors of a PS rod-like structure with flexural deformations under different combinations of temperature changes and mechanical loads are evaluated.The tuning effect of temperature changes and mechanical loads on multi-field coupling behaviors of PSs is revealed.The current–voltage characteristics of PS PN junctions are studied under different combinations of temperature changes and mechanical loads.The obtained results are helpful for the development of novel PS devices.展开更多
Efficient and sustainable use of water-based lubricants is essential for energy efficiency.Therefore,the use of water-lubricated mechanical systems instead of conventional oil lubricants is extremely attractive from t...Efficient and sustainable use of water-based lubricants is essential for energy efficiency.Therefore,the use of water-lubricated mechanical systems instead of conventional oil lubricants is extremely attractive from the viewpoint of resource conservation.In this study,water-soluble Cu nanoparticles of size approximately 3 nm were prepared at room temperature(around 25 °C) via in-situ surface modification.The tribological behavior of the as-synthesized Cu nanoparticles as an additive in distilled water was evaluated using a universal micro-tribotester.The results show that the as-synthesized Cu nanoparticles,as a water-based lubricant additive,can significantly improve the tribological properties of distilled water.In particular,the lowest friction coefficient of 0.06 was obtained via lubrication with a concentration of 0.6 wt% of Cu nanoparticles in distilled water,which is a reduction of 80.6% compared with that obtained via lubrication with distilled water alone.It is considered that some Cu nanoparticles entered the contact area of the friction pairs to form a complex lubricating film and prevent direct contact of the friction pairs.Furthermore,some Cu nanoparticles in the solution accelerate the heat transfer process,which also results in good tribological properties.展开更多
CeO_(2)nanoparticles are potential anti-wear additives because of their outstanding anti-wear and load-bearing capacity.However,the shear-sintering tribo-film formation mechanism of oxide nanoparticles limits the trib...CeO_(2)nanoparticles are potential anti-wear additives because of their outstanding anti-wear and load-bearing capacity.However,the shear-sintering tribo-film formation mechanism of oxide nanoparticles limits the tribo-film formation rate and thickness greatly.In this study,by compounding with zinc dioctyl dithiophosphate(ZDDP),ultra-fine CeO_(2)nanoparticles modified with oleylamine(OM)can quickly form 2μm ultra-thick tribo-film,which is 10-15 times thicker than that of ZDDP and CeO_(2),respectively.The ultra-thick tribo-film presents a nanocomposite structure with amorphous phosphate as binder and nano-CeO_(2)as filling phase,which leads to the highest loading capacity of composite additives.The results of adsorption experiments tested by dissipative quartz crystal microbalance(QCM-D)showed that the Ps value of additive has nothing to do with its equilibrium adsorption mass,but is directly proportional to its adsorption rate in 10 s.The compound additive of CeO_(2)and ZDDP presented the co-deposition mode of ZDDP monolayer rigid adsorption and CeO_(2)viscoelastic adsorption on the metal surface,which showed the highest adsorption rate in 10 s.It is found that the tribo-film must have high film forming rate and wear resistance at the same time in order to achieve super thickness.Cerium phosphate was formed from ZDDP and CeO,through tribochemistry reaction,which promotes the formation of an ultra-thick tribo-film with nanocomposite structure,which not only maintains the low friction characteristics of CeO,but also realizes high Pg and high load-carrying capacity.展开更多
We study electromechanical fields near the interface between a circular piezoelectric semiconductor cylinder and another piezoelectric semiconductor in which it is embedded. The cylinder is p-doped. The surrounding ma...We study electromechanical fields near the interface between a circular piezoelectric semiconductor cylinder and another piezoelectric semiconductor in which it is embedded. The cylinder is p-doped. The surrounding material is n-doped. The phenomenological theory of piezoelectric semiconductors consisting of the equations of piezoelectricity and the conservation of charge for holes and electrons is used. The theory is linearized for small carrier concentration perturbations. An analytical solution is obtained, showing the formation of a PN junction near the interface. Various electromechanical fields associated with the junction are calculated. The effects of a few physical parameters are examined.展开更多
We study the electrical response of a multiferroic composite semiconductor fiber consisting of a piezoelectric semiconductor layer and two piezomagnetic layers under a transverse magnetic field applied locally to a fi...We study the electrical response of a multiferroic composite semiconductor fiber consisting of a piezoelectric semiconductor layer and two piezomagnetic layers under a transverse magnetic field applied locally to a finite part of the fiber.The phenomenological theory of piezomagnetic-piezoelectric semiconductors is employed.A one-dimensional model is derived for magnetically induced extension of the fiber.For open-circuit boundary conditions at the two ends of the fiber,an analytical solution is obtained from the model linearized for small carrier perturbations.The solution shows a local electric polarization and a pair of local electric potential barrier-well.When the two ends of the fiber are under a voltage,a nonlinear numerical solution shows that the potential barrier and well forbid the passage of currents when the voltage is low.The results have potential applications in piezotronic devices when magnetic fields are involved for manipulating the devices or sensing and transduction.展开更多
A magnetic ionic liquid(abridged as MIL)[C_(6)mim]_(5)[Dy(SCN)_(8)]was prepared and used as the magnetic lubricant of a steel-steel sliding pair.The tribological properties of the as-prepared MIL were evaluated with a...A magnetic ionic liquid(abridged as MIL)[C_(6)mim]_(5)[Dy(SCN)_(8)]was prepared and used as the magnetic lubricant of a steel-steel sliding pair.The tribological properties of the as-prepared MIL were evaluated with a commercially obtained magnetic fluid lubricant(abridged as MF;the mixture of dioctyl sebacate and Fe_(3)O_(4),denoted as DIOS-Fe_3O_4)as a control.The lubrication mechanisms of the two types of magnetic lubricants were discussed in relation to worn surface analyses by SEM-EDS,XPS,and profilometry,as well as measurement of the electric contact resistance of the rubbed steel surfaces.The results revealed that the MIL exhibits better friction-reducing and antiwear performances than the as-received MF under varying test temperatures and loads.This is because the MIL participates in tribochemical reactions during the sliding process,and forms a boundary lubrication film composed of Dy_(2)O_(3),FeS,FeSO_(4),nitrogen-containing organics,and thioether on the rubbed disk surface,thereby reducing the friction and wear of the frictional pair.However,the MF is unable to form a lubricating film on the surface of the rubbed steel at 25°C,though it can form a boundary film consisting of Fe_(3)O_(4) and a small amount of organics under high temperature.Furthermore,the excessive Fe_(3)O_(4) particulates that accumulate in the sliding zone may lead to enhanced abrasive wear of the sliding pair.展开更多
In this study,water soluble CuO nanostructures having nanobelt,nanorod,or spindle morphologies were synthesized using aqueous solutions of Cu(NO_(3))_(2)·3H_(2)O and NaOH by adjusting the type of surface modifier...In this study,water soluble CuO nanostructures having nanobelt,nanorod,or spindle morphologies were synthesized using aqueous solutions of Cu(NO_(3))_(2)·3H_(2)O and NaOH by adjusting the type of surface modifier and reaction temperature.The effect of morphologies of these various CuO nanostructures as water‐based lubricant additives on tribological properties was evaluated on a UMT‐2 micro‐friction tester,and the mechanisms underlying these properties are discussed.The three different morphologies of CuO nanostructures exhibited excellent friction‐reducing and anti‐wear properties.Tribological mechanisms differed in the initial stage of frictional interactions,but in the stable stage,a tribochemical reaction film and adsorbed lubricious film on the rubbing surfaces played important roles in hindering direct contact between friction pairs,leading to improved tribological properties.展开更多
Acutemyeloid leukemia(AML),which is the most common form of acute leukemia in adults,is a heterogeneous,clonal hematopoietic disorder characterized by the accumulation of immature myeloid progenitors.This heterogeneit...Acutemyeloid leukemia(AML),which is the most common form of acute leukemia in adults,is a heterogeneous,clonal hematopoietic disorder characterized by the accumulation of immature myeloid progenitors.This heterogeneity is especially obvious in the“intermediate-risk group”as defined by international criteria such as those of the European LeukemiaNet,Medical Research Council(MRC),and National Comprehensive Cancer Network.展开更多
The unprecedented coronavirus disease 2019(COVID-19)pandemic is still raging(in year 2021)in many countries worldwide.Various response strategies to study the characteristics and distributions of the virus in various ...The unprecedented coronavirus disease 2019(COVID-19)pandemic is still raging(in year 2021)in many countries worldwide.Various response strategies to study the characteristics and distributions of the virus in various regions of the world have been developed to assist in the prevention and control of this epidemic.Descriptive statistics and regression analysis on COVID-19 data from different countries were conducted in this study to compare and evaluate various regression models.Results showed that the extreme random forest regression(ERFR)model had the best performance,and factors such as population density,ozone,median age,life expectancy,and Human Development Index(HDI)were relatively influential on the spread and diffusion of COVID-19 in the ERFR model.In addition,the epidemic clustering characteristics were analyzed through the spectral clustering algorithm.The visualization results of spectral clustering showed that the geographical distribution of global COVID-19 pandemic spread formation was highly clustered,and its clustering characteristics and influencing factors also exhibited some consistency in distribution.This study aims to deepen the understanding of the international community regarding the global COVID-19 pandemic to develop measures for countries worldwide to mitigate potential large-scale outbreaks and improve the ability to respond to such public health emergencies.展开更多
Silica hollow microspheres containing phos-phorous have been prepared by a sol-gel/emulsion method which uses tetraethoxysilane(TEOS)as the precursor for the SiO_(2) and phosphoric acid(H3PO4)as the precursor for P2O5...Silica hollow microspheres containing phos-phorous have been prepared by a sol-gel/emulsion method which uses tetraethoxysilane(TEOS)as the precursor for the SiO_(2) and phosphoric acid(H3PO4)as the precursor for P2O5.The hollow structure forms an emulsion system which is composed of an oil phase(kerosene,sorbitan monooleate(Span 80))and an aqueous phase(a viscous sol solution of ethanol,TEOS and H3PO4).Some of the phosphorous remains in thefinal silica shell structure even after calcination at 650°C.The hollow structure of the P2O5-SiO_(2)(silicophosphate)was characterized by X-ray diffraction(XRD),polarized optical microscopy(POM),scanning electron microscopy(SEM),nitrogen adsorption measurement and Fourier transform infrared spectroscopy(FTIR).展开更多
基金Project supported by the National Natural Science Foundation of China (Nos.12172326 and 11972319)the National Key Research and Development Program of China (No.2020YFA0711700)the Natural Science Foundation of Zhejiang Province of China (No.LR21A020002)。
文摘Piezoelectric semiconductors(PSs)possess both semiconducting properties and piezoelectric coupling effects,making them optimal building blocks for semiconductor devices.PS fiber-like structures have wide applications in multi-functional semiconductor devices.In this paper,a one-dimensional(1D)theoretical model is established to describe the piezotronic responses of a PS fiber under gradient temperature changes.The theoretical model aims to explain the mechanism behind the resistance change caused by such gradient temperature changes.Numerical results demonstrate that a gradient temperature change significantly affects the physical fields within the PS fiber,and can induce changes in its surface resistance.It provides important theoretical guidance on the development of piezotronic devices that are sensitive to temperature effects.
基金supported by the People’s Liberation Army Fund for Special Projects of Medical Sciences, No. 06G114
文摘This study aimed to identify the optimal neural progenitor cell transplantation time for spinal cord injury in rats via the subarachnoid space. Cultured neural progenitor cells from 14-day embryonic rats, constitutively expressing enhanced green fluorescence protein, or media alone, were injected into the subarachnoid space of adult rats at 1 hour (acute stage), 7 days (subacute stage) and 28 days (chronic stage) after contusive spinal cord injury. Results showed that grafted neural progenitor cells migrated and aggregated around the blood vessels of the injured region, and infiltrated the spinal cord parenchyma along the tissue spaces in the acute stage transplantation group. However, this was not observed in subacute and chronic stage transplantation groups. 04- and glial fibrillary acidic protein-positive cells, representing oligodendrocytes and astrocytes respectively, were detected in the core of the grafted cluster attached to the cauda equina pia surface in the chronic stage transplantation group 8 weeks after transplantation. Both acute and subacute stage transplantation groups were negative for 04 and glial fibrillary acidic protein cells. Basso, Beattie and Bresnahan scale score comparisons indicated that rat hind limb locomotor activity showed better recovery after acute stage transplantation than after subacute and chronic transplantation. Our experimental findings suggest that the subarachnoid route could be useful for transplantation of neural progenitor cells at the acute stage of spinal cord injury. Although grafted cells survived only for a short time and did not differentiate into astrocytes or neurons, they were able to reach the parenchyma of the injured spinal cord and improve neurological function in rats. Transplantation efficacy was enhanced at the acute stage in comparison with subacute and chronic stages.
基金This work was supported by grants from the Fundamental Research Funds for the Central Universities(2662019PY048)the National Natural Science Foundation of China(31772313,31972421,and 31991182)。
文摘Anthocyanins play vital roles in plant stress tolerance and growth regulation.Previously,we reported that the photomorphogenesis-related transcription factor SlBBX20 regulates anthocyanin accumulation in tomato.However,the underlying mechanism remains unclear.Here,we showed that SlBBX20 promotes anthocyanin biosynthesis by binding the promoter of the anthocyanin biosynthesis gene SlDFR,suggesting that SlBBX20 directly activates anthocyanin biosynthesis genes.Furthermore,we found by yeast two-hybrid screening that SlBBX20 interacts with the COP9 signalosome subunit SlCSN5-2,and the interaction was confirmed by bimolecular fluorescence complementation and coimmunoprecipitation assays.SlCSN5 gene silencing led to anthocyanin hyperaccumulation in the transgenic tomato calli and shoots,and SlCSN5-2 overexpression decreased anthocyanin accumulation,suggesting thSlCSN5-2 enhanced the ubiquitination of SlBBX20 and promoted the degradation of SlBBX20 in vivo.Consistently,silencing the SlCSN5-2 homolog in tobacco significantly increased the accumulation of the SlBBX20 protein.Since SlBBX20 is a vital regulator of photomorphogenesis,the SlBBX20-SlCSN5-2 module may represent a novel regulatory pathway in light-induced anthocyanin biosynthesis.
基金The authors thank the Natural Science Foundation of Liaoning, China under grant No.2040189. Authors express their gratitude to the Institute of Metal Research, Chinese Academy of Sciences.
文摘Nanocrystalline nickel zinc ferrite powders (Ni=Zn1-xFe2O4, A for x=0, B for x=0.2, C for x=0.5, D for x= 0.8 and E for x= 1) were synthesized by polyacrylamide gel method. X-ray diffraction (XRD), transmission electron microscopy (TEM) and wave-guide were used to characterize the composition. The XRD results show that the dried gel powders are amorphous, and the characteristic peaks of the spinel Ni0.5Zn0.5Fe2O4 appear after the gel is calcined at 400℃ for 1 h. When the calcining temperatures are 600 and 800℃, the average grain sizes are identified by TEM to be 10 and 30 nm, respectively. The NixZn1-xFe2O4 powders have both dielectric loss and magnetic loss in the frequency range of 8.2-11.0GHz. With the increase of Ni^2+ ions content, the dielectric parameters (ε′) and permeability (u′) of the NixZn1-xFe2O4 powders decrease while the dielectric loss (ε″), magnetic loss (u″) and the reflection loss increase.
基金This work was supported by grants from the Beijing Committee of Science and Technology(Grant No.Z181100001718162)the Fundamental Research Funds for the Central Universities(Grant No.3332020071)+2 种基金the CAMS Innovation Fund for Medical Sciences(Grant No.2018-I2M-1-002)the Capital’s Funds for Health Improvement and Research(Grant No.2018-4-4089)the Beijing Municipal Natural Science Foundation(Grant No.7182178).
文摘Objective:Acute myeloid leukemia(AML)is primarily a malignant disorder affecting the elderly.We aimed to compare the outcomes of different treatment patterns in elderly AML patients and to propose a prognostic scoring system that could predict survival and aid therapeutic decisions.Methods:Patients aged≥60 years who had been diagnosed with AML at 7 hospitals in China were enrolled(n=228).Treatment patterns included standard chemotherapy,low intensity therapy,and best supportive care(BSC).Results:The early mortality rates were 31%,6.8%,and 6.3%for the BSC,low intensity therapy,and standard chemotherapy groups,respectively.The complete remission rate of the standard chemotherapy group was higher than that of the low intensity therapy group.The median overall survival(OS)was 561 days and 222 days for the standard chemotherapy and low intensity therapy groups,respectively,and were both longer than that of the BSC group(86 days).Based on multivariate analyses,we defined a prognostic scoring system that enabled classification of patients into 3 risk groups,in an attempt to predict the OS of patients receiving chemotherapies and low intensity therapies.Low and intermediate risk patients benefited more from standard chemotherapies than from low intensity therapies.However,the median OS was comparable between standard chemotherapies and low intensity therapies in high risk patients.Conclusions:Our prognostic scoring system could predict survival and help select appropriate therapies for elderly AML patients.Standard chemotherapy is important for elderly AML patients,particularly for those categorized into low and intermediate risk groups.
基金Project supported by the National Natural Science Foundation of China(Nos.11672265,11202182,and 11621062)the Fundamental Research Funds for the Central Universities(Nos.2016QNA4026 and2016XZZX001-05)the Open Foundation of Zhejiang Provincial Top Key Discipline of Mechanical Engineering
文摘A theoretical model is developed for predicting both conduction and diffusion in thin-film ionic conductors or cables. With the linearized Poisson-Nernst-Planck(PNP)theory, the two-dimensional(2D) equations for thin ionic conductor films are obtained from the three-dimensional(3D) equations by power series expansions in the film thickness coordinate, retaining the lower-order equations. The thin-film equations for ionic conductors are combined with similar equations for one thin dielectric film to derive the 2D equations of thin sandwich films composed of a dielectric layer and two ionic conductor layers. A sandwich film in the literature, as an ionic cable, is analyzed as an example of the equations obtained in this paper. The numerical results show the effect of diffusion in addition to the conduction treated in the literature. The obtained theoretical model including both conduction and diffusion phenomena can be used to investigate the performance of ionic-conductor devices with any frequency.
基金supported by the National Natural Science Foundation of China(Nos.12172326,11972319,and 12302210)the Natural Science Foundation of Zhejiang province,China(No.LR21A020002)the specialized research projects of Huanjiang Laboratory.
文摘Based on the three-dimensional(3D)basic equations of piezoelectric semiconductors(PSs),we establish a two-dimensional(2D)deformation-polarization-carrier coupling bending model for PS structures,taking flexoelectricity into consideration.The analytical solutions to classical flexure of a clamped circular PS thin plate are derived.With the derived analytical model,we numerically investigate the distributions of electromechanical fields and the concentration of electrons in the circular PS thin plate under an upward concentrated force.The effect of flexoelectricity on the multi-field coupling responses of the circular PS plate is studied.The obtained results provide theoretical guidance for the design of novel PS devices.
基金supported by the National Natural Science Foundation of China[11972139]Natural Science Foundation of Zhejiang Province[LR21A020002]Specialized research projects of Huanjiang Laboratory。
文摘Piezoelectric semiconductors(PSs)have widespread applications in semiconductor devices due to the coexistence of piezoelec-tricity and semiconducting properties.It is very important to conduct a theoretical analysis of PS structures.However,the present of nonlinearity in the partial differential equations(PDEs)that describe those multi-feld coupling mechanical behaviors of PSs poses a significant mathematical challenge when studying these PS structures.In this paper,we present a novel approach based on machine learning for solving multi-field coupling problems in PS structures.A physics-informed neural networks(PINNs)is constructed for predicting the multi-field coupling behaviors of PS rods with extensional deforma-tion.By utilizing the proposed PINNs,we evaluate the multi-field coupling responses of a ZnO rod under static and dynamic axial forces.Numerical results demonstrate that the proposed PINNs exhibit high accuracy in solving both static and dynamic problems associated with Ps structures.It provides an effective approach to predicting the nonlinear multi-feld coupling phe-nomena in PS structures.
基金supported by the National Key Research and Development Program of China(No.2020YFA0711700)the National Natural Science Foundation of China(Nos.12172326,11972139)+1 种基金the Natural Science Foundation of Zhejiang province,China(No.LR21A020002)the specialized research projects of Huanjiang Laboratory.
文摘Piezoelectric semiconductors(PSs),such as ZnO and GaN,known as the third-generation semiconductors,have promising applications in electronic and optoelectronic devices due to the coexistence and interaction of piezoelectricity and semiconductor properties.Theoretical modeling of PS structures under external loads,such as thermal and mechanical loads,plays a crucial role in the design of PS devices.In this work,we propose a nonlinear fully coupling theoretical model and investigate the multi-field coupling behaviors of PS structures and PN junctions under thermal and mechanical loads,considering physical and geometric nonlinearities.The electromechanical and semiconducting behaviors of a PS rod-like structure with flexural deformations under different combinations of temperature changes and mechanical loads are evaluated.The tuning effect of temperature changes and mechanical loads on multi-field coupling behaviors of PSs is revealed.The current–voltage characteristics of PS PN junctions are studied under different combinations of temperature changes and mechanical loads.The obtained results are helpful for the development of novel PS devices.
基金the financial support provided by the Ministry of Science and Technology of China(project of “973” Plan,grant No.2013CB632303)National Natural Science Foundation of China(grant Nos.51405132,21671053 and 51605143)
文摘Efficient and sustainable use of water-based lubricants is essential for energy efficiency.Therefore,the use of water-lubricated mechanical systems instead of conventional oil lubricants is extremely attractive from the viewpoint of resource conservation.In this study,water-soluble Cu nanoparticles of size approximately 3 nm were prepared at room temperature(around 25 °C) via in-situ surface modification.The tribological behavior of the as-synthesized Cu nanoparticles as an additive in distilled water was evaluated using a universal micro-tribotester.The results show that the as-synthesized Cu nanoparticles,as a water-based lubricant additive,can significantly improve the tribological properties of distilled water.In particular,the lowest friction coefficient of 0.06 was obtained via lubrication with a concentration of 0.6 wt% of Cu nanoparticles in distilled water,which is a reduction of 80.6% compared with that obtained via lubrication with distilled water alone.It is considered that some Cu nanoparticles entered the contact area of the friction pairs to form a complex lubricating film and prevent direct contact of the friction pairs.Furthermore,some Cu nanoparticles in the solution accelerate the heat transfer process,which also results in good tribological properties.
基金We acknowledge the financial support provided by the National Natural Science Foundation of China(Nos.51875172 and 51775168)Scientific and Technological Innovation Team of Henan Province Universities(No.19IRTSTHN024)Zhongyuan Science and Technology Innovation Leadership Program(No.214200510024).
文摘CeO_(2)nanoparticles are potential anti-wear additives because of their outstanding anti-wear and load-bearing capacity.However,the shear-sintering tribo-film formation mechanism of oxide nanoparticles limits the tribo-film formation rate and thickness greatly.In this study,by compounding with zinc dioctyl dithiophosphate(ZDDP),ultra-fine CeO_(2)nanoparticles modified with oleylamine(OM)can quickly form 2μm ultra-thick tribo-film,which is 10-15 times thicker than that of ZDDP and CeO_(2),respectively.The ultra-thick tribo-film presents a nanocomposite structure with amorphous phosphate as binder and nano-CeO_(2)as filling phase,which leads to the highest loading capacity of composite additives.The results of adsorption experiments tested by dissipative quartz crystal microbalance(QCM-D)showed that the Ps value of additive has nothing to do with its equilibrium adsorption mass,but is directly proportional to its adsorption rate in 10 s.The compound additive of CeO_(2)and ZDDP presented the co-deposition mode of ZDDP monolayer rigid adsorption and CeO_(2)viscoelastic adsorption on the metal surface,which showed the highest adsorption rate in 10 s.It is found that the tribo-film must have high film forming rate and wear resistance at the same time in order to achieve super thickness.Cerium phosphate was formed from ZDDP and CeO,through tribochemistry reaction,which promotes the formation of an ultra-thick tribo-film with nanocomposite structure,which not only maintains the low friction characteristics of CeO,but also realizes high Pg and high load-carrying capacity.
基金supported by the National Natural Science Foundation of China (Nos.11672265,11621062,and 11202182)the Fundamental Research Funds for the Central Universities (Nos.2016QNA4026 and 2016XZZX001-05)the open foundation of Zhejiang Provincial Top Key Discipline of Mechanical Engineering
文摘We study electromechanical fields near the interface between a circular piezoelectric semiconductor cylinder and another piezoelectric semiconductor in which it is embedded. The cylinder is p-doped. The surrounding material is n-doped. The phenomenological theory of piezoelectric semiconductors consisting of the equations of piezoelectricity and the conservation of charge for holes and electrons is used. The theory is linearized for small carrier concentration perturbations. An analytical solution is obtained, showing the formation of a PN junction near the interface. Various electromechanical fields associated with the junction are calculated. The effects of a few physical parameters are examined.
基金This work was supported by the National Natural Science Foundation of China(Nos.11672265,11972139,and 11621062)the Science and Technology Innovation Committee of Shenzhen(No.JCYJ20180227175523802)+1 种基金the State Key Laboratory of Mechanics and Control of Mechanical Structures(Nanjing University of Aeronautics and astronautics,No.MCMS-E-0220K01)Department of Water Resources of Zhejiang Province(No.RC1719).
文摘We study the electrical response of a multiferroic composite semiconductor fiber consisting of a piezoelectric semiconductor layer and two piezomagnetic layers under a transverse magnetic field applied locally to a finite part of the fiber.The phenomenological theory of piezomagnetic-piezoelectric semiconductors is employed.A one-dimensional model is derived for magnetically induced extension of the fiber.For open-circuit boundary conditions at the two ends of the fiber,an analytical solution is obtained from the model linearized for small carrier perturbations.The solution shows a local electric polarization and a pair of local electric potential barrier-well.When the two ends of the fiber are under a voltage,a nonlinear numerical solution shows that the potential barrier and well forbid the passage of currents when the voltage is low.The results have potential applications in piezotronic devices when magnetic fields are involved for manipulating the devices or sensing and transduction.
基金the financial support provided by the National Natural Science Foundation of China(Grant Nos.51605143,21671053,51775168,and 51875172)the Scientific and Technological Innovation Team of Henan Province Universities(Grant No.19IRTSTHN024)。
文摘A magnetic ionic liquid(abridged as MIL)[C_(6)mim]_(5)[Dy(SCN)_(8)]was prepared and used as the magnetic lubricant of a steel-steel sliding pair.The tribological properties of the as-prepared MIL were evaluated with a commercially obtained magnetic fluid lubricant(abridged as MF;the mixture of dioctyl sebacate and Fe_(3)O_(4),denoted as DIOS-Fe_3O_4)as a control.The lubrication mechanisms of the two types of magnetic lubricants were discussed in relation to worn surface analyses by SEM-EDS,XPS,and profilometry,as well as measurement of the electric contact resistance of the rubbed steel surfaces.The results revealed that the MIL exhibits better friction-reducing and antiwear performances than the as-received MF under varying test temperatures and loads.This is because the MIL participates in tribochemical reactions during the sliding process,and forms a boundary lubrication film composed of Dy_(2)O_(3),FeS,FeSO_(4),nitrogen-containing organics,and thioether on the rubbed disk surface,thereby reducing the friction and wear of the frictional pair.However,the MF is unable to form a lubricating film on the surface of the rubbed steel at 25°C,though it can form a boundary film consisting of Fe_(3)O_(4) and a small amount of organics under high temperature.Furthermore,the excessive Fe_(3)O_(4) particulates that accumulate in the sliding zone may lead to enhanced abrasive wear of the sliding pair.
基金The authors acknowledge the financial support provided by National Natural Science Foundation of China(Nos.51775168,21671053,51875172,51605143,and 51605469)Scientific and Technological Innovation Team of Henan University(No.19IRTSTHN024)Key Scientific Research Project of Colleges and Universities in Henan Province(No.20A150003)。
文摘In this study,water soluble CuO nanostructures having nanobelt,nanorod,or spindle morphologies were synthesized using aqueous solutions of Cu(NO_(3))_(2)·3H_(2)O and NaOH by adjusting the type of surface modifier and reaction temperature.The effect of morphologies of these various CuO nanostructures as water‐based lubricant additives on tribological properties was evaluated on a UMT‐2 micro‐friction tester,and the mechanisms underlying these properties are discussed.The three different morphologies of CuO nanostructures exhibited excellent friction‐reducing and anti‐wear properties.Tribological mechanisms differed in the initial stage of frictional interactions,but in the stable stage,a tribochemical reaction film and adsorbed lubricious film on the rubbing surfaces played important roles in hindering direct contact between friction pairs,leading to improved tribological properties.
基金supported by the National Key Research and Development Program of China(2022YFC2502600,2022YFC2502606)the National Natural Science Foundation of China(82170206,82170208)+3 种基金the CAMS Innovation Fund for Medical Sciences(2019-I2M-5-034,2022-I2M-C&T-B-121)Peking University People’s Hospital Research and Development Funds(RZ2022-02)National High Level Hospital Clinical Research Funding(BJ-2022-169)ShanghaiMunicipal Health Commission Project of Disciplines of Excellence(20234Z0002).
文摘Acutemyeloid leukemia(AML),which is the most common form of acute leukemia in adults,is a heterogeneous,clonal hematopoietic disorder characterized by the accumulation of immature myeloid progenitors.This heterogeneity is especially obvious in the“intermediate-risk group”as defined by international criteria such as those of the European LeukemiaNet,Medical Research Council(MRC),and National Comprehensive Cancer Network.
基金This work was supported in part by the National University Student Innovation and Entrepreneurship in Training Program of China(No.202110373044)the National Natural Science Foundation of China(No.71801108)+1 种基金the Laboratory Opening Project Fund of Huaibei Normal University(No.2021sykf041)the Special Needs Project of Huaibei Normal University(No.2021zlgc147)。
文摘The unprecedented coronavirus disease 2019(COVID-19)pandemic is still raging(in year 2021)in many countries worldwide.Various response strategies to study the characteristics and distributions of the virus in various regions of the world have been developed to assist in the prevention and control of this epidemic.Descriptive statistics and regression analysis on COVID-19 data from different countries were conducted in this study to compare and evaluate various regression models.Results showed that the extreme random forest regression(ERFR)model had the best performance,and factors such as population density,ozone,median age,life expectancy,and Human Development Index(HDI)were relatively influential on the spread and diffusion of COVID-19 in the ERFR model.In addition,the epidemic clustering characteristics were analyzed through the spectral clustering algorithm.The visualization results of spectral clustering showed that the geographical distribution of global COVID-19 pandemic spread formation was highly clustered,and its clustering characteristics and influencing factors also exhibited some consistency in distribution.This study aims to deepen the understanding of the international community regarding the global COVID-19 pandemic to develop measures for countries worldwide to mitigate potential large-scale outbreaks and improve the ability to respond to such public health emergencies.
基金supported by the Graduate Creativity Fund from the China University of Petroleum,Special Plan of Science and Technology of Dongying(T1104002)the Open project from the State Key Laboratory of Fiber Modification(SKLFM)at Donghua University(LK0905 and LK0910).
文摘Silica hollow microspheres containing phos-phorous have been prepared by a sol-gel/emulsion method which uses tetraethoxysilane(TEOS)as the precursor for the SiO_(2) and phosphoric acid(H3PO4)as the precursor for P2O5.The hollow structure forms an emulsion system which is composed of an oil phase(kerosene,sorbitan monooleate(Span 80))and an aqueous phase(a viscous sol solution of ethanol,TEOS and H3PO4).Some of the phosphorous remains in thefinal silica shell structure even after calcination at 650°C.The hollow structure of the P2O5-SiO_(2)(silicophosphate)was characterized by X-ray diffraction(XRD),polarized optical microscopy(POM),scanning electron microscopy(SEM),nitrogen adsorption measurement and Fourier transform infrared spectroscopy(FTIR).