Mordenite with different Si/Al ratios were synthesized by solvent-free method and used for dimethyl ether(DME)carbonylation reaction.The influence of Si/Al ratio in the feedstock on the structure,porosity and acid sit...Mordenite with different Si/Al ratios were synthesized by solvent-free method and used for dimethyl ether(DME)carbonylation reaction.The influence of Si/Al ratio in the feedstock on the structure,porosity and acid sites were systematically investigated.The characterization results showed that with the increase of Si/Al ratio in the feedstock,part of silicon species fail to enter the skeleton and the specific surface area and pore volume of the samples decreased.The amount of weak acid and medium strong acid decreased alongside with the increasing Si/Al ratio,and the amount of strong acid slightly increased.The Al atoms preferentially enter the strong acid sites in the 8 member ring(MR)channel during the crystallization process.The high Si/Al ratio sample had more acid sites located in the 8 MR channel,leading to more active sites for carbonylation reaction and higher catalytic performance.Appropriately increasing the Si/Al ratio was beneficial for the improvement of carbonylation reaction activity over the mordenite(MOR)catalyst.展开更多
1-hexene aromatization is a promising technology to convert excess olefin in fluid catalytic cracking(FCC)gasoline to high-value benzene(B),toluene(T),and xylene.Besides,the increasing market demand of xylene has put ...1-hexene aromatization is a promising technology to convert excess olefin in fluid catalytic cracking(FCC)gasoline to high-value benzene(B),toluene(T),and xylene.Besides,the increasing market demand of xylene has put forward higher requirements for new generation of catalyst.For increasing xylene yield in 1-hexene aromatization,the effect of mesopore structure and spatial distribution on product distribution and Zn loading was studied.Catalysts with different mesopore spatial distribution were prepared by post-treatment of parent HZSM-5 zeolite,including NaOH treatment,tetra-propylammonium hydroxide(TPAOH)treatment,and recrystallization.It was found the evenly distributed mesopore mainly prolongs the catalyst lifetime by enhancing diffusion properties but reduces the aromatics selectivity,as a result of damage of micropores close to the catalyst surface.While the selectivity of high-value xylene can be highly promoted when the mesopore is mainly distributed interior the catalyst.Besides,the state of loaded Zn was also affected by mesopores spatial distribution.On the optimized catalyst,the xylene selectivity was enhanced by 12.4%compared with conventional Zn-loaded parent HZSM-5 catalyst at conversion over 99%.It was attributed to the synergy effect of mesopores spatial distribution and optimized acid properties.This work reveals the role of mesopores in different spatial positions of 1-hexene aromatization catalysts in the reaction process and the influence on metal distribution,as well as their synergistic effect two on the improvement of xylene selectivity,which can improve our understanding of catalyst pore structure and be helpful for the rational design of high-efficient catalyst.展开更多
1.Introduction Human’s consumption of fossil fuel energy,accompanied by enormous quantities of carbon dioxide(CO_(2))emissions,is closely related to glacier melting,sea level rise,and the frequent occurrence of extre...1.Introduction Human’s consumption of fossil fuel energy,accompanied by enormous quantities of carbon dioxide(CO_(2))emissions,is closely related to glacier melting,sea level rise,and the frequent occurrence of extreme weather in the 20th century.The Intergovernmental Panel on Climate Change(IPCC)put forward the goal of carbon neutrality in October 2018.So far,more than 130 countries and regions around the world have proposed their corresponding goal of carbon neutrality.China has also proposed to achieve a carbon peak and carbon neutrality[1].展开更多
Nanosize cerium-zirconium solid solution(CZO)with a special fluorite structure has received an increasing research interest due to their remarkable advantages such as excellent oxygen storage capacity and great flexib...Nanosize cerium-zirconium solid solution(CZO)with a special fluorite structure has received an increasing research interest due to their remarkable advantages such as excellent oxygen storage capacity and great flexibility in their composition and structure.By partial metal(including rare earth,transition,alkaline earth or other metal)doping into CZO,the physicochemical properties of these catalytic materials can be controllable adjusted for the study of specific reactions.To date,nanosize CZO has been prepared by co-precipitation,sol-gel,surfactant-assisted approach,solution combustion,micro-emulsion,high energy mechanical milling,etc.The advent of these methodologies has prompted researchers to construct well-defined networks with customized micromorphology and functionalities.In this review,we describe not only the basic structure and synthetic strategies of CZO,but also their relevant applications in environmental catalysis,such as the purification for CO,nitrogen oxides(NOx),volatile organic compounds(VOC),soot,hydrocarbon(HC),CO2 and solid particulate matters(PM),and some reaction mechanisms are also summarized.展开更多
As a secondary energy with great commercialization potential,hydrogen energy has been widely studied due to the high calorific value,clean combustion products and various reduction methods.At present,the blueprint of ...As a secondary energy with great commercialization potential,hydrogen energy has been widely studied due to the high calorific value,clean combustion products and various reduction methods.At present,the blueprint of hydrogen energy economy in the world is gradually taking shape.Compared with the traditional high-energy consuming methane steam reforming hydrogen production method,the electrocatalytic water splitting hydrogen production stands out among other process of hydrogen production owning to the mild reaction conditions,high-purity hydrogen generation and sustainable production process.Basing on current technical economy situation,the highly electric power cost limits the further promotion of electrocatalytic water splitting hydrogen production process.Consequently,the rational design and development of low overpotential and high stability electrocatalytic water splitting catalysts are critical toward the realization of low-cost hydrogen production technology.In this review,we summarize the existing hydrogen production methods,elaborate the reaction mechanism of the electrocatalytic water splitting reaction under acidic and alkaline conditions and the recent progress of the respective catalysts for the two half-reactions.The structure-activity relationship of the catalyst was deep-going discussed,together with the prospects of electrocatalytic water splitting and the current challenges,aiming at provide insights for electrocatalytic water splitting catalyst development and its industrial applications.展开更多
In this work,the octaethyl-porphyrins with different central metals(M-OEP,M=Ni,VO,Cu,Co)were used to investigate the ground-state molecular structure,electron distribution and UV-spectra properties on molecular level ...In this work,the octaethyl-porphyrins with different central metals(M-OEP,M=Ni,VO,Cu,Co)were used to investigate the ground-state molecular structure,electron distribution and UV-spectra properties on molecular level by density functional theory(DFT).The results showed that the calculation structure parameters of metalloporphyrins agreed well with the experimental value.According to the Natural Bond Orbital(NBO)analysis,the charge distribution of different metalloporphyrins was found that the charge values of the central metal M decreased with the order of VO<Ni<Co<Cu,while the bonding strength between M and the coordinating atom N was VO>Ni>Co>Cu.At the same time,the frontier molecular orbital calculations showed that the SOMO energy of VO(OEP)molecules in the open-shell system was higher than that of Co(OEP)and Cu(OEP),which means that its UV absorption characteristic peak would be red-shifted.In addition,the IEFPCM model of Time-dependent Density functional theory(TD-DFT)was further utilized to simulate the four substance in toluene solution:Co(OEP),Ni(OEP),Cu(OEP)and VO(OEP),and the Soret band peaks were calculated respectively as:382 nm,383 nm,391 nm and 401 nm.Furthermore,the quantitative simulation analysis of metalloporphyrins was combined with experimental data.It could be found that the location rules of the four kinds of metalloporphyrins calculated absorption characteristic peaks were consistent with the experimental ones,and the relative errors of each peak were within 3%.These methods used above provide a theoretical path for analyzing and identifying unknown porphyrin compounds in petroleum.展开更多
With increasing importance attached by the international community to global climate change and the pressing energy revolution,hydrogen energy,as a clean,efficient energy carrier,can serve as an important support for ...With increasing importance attached by the international community to global climate change and the pressing energy revolution,hydrogen energy,as a clean,efficient energy carrier,can serve as an important support for the establishment of a sustainable society.The United States and countries in Europe have already formulated relevant policies and plans for the use and development of hydrogen energy.While in China,aided by the“30·60”goal,the development of the hydrogen energy,production,transmission,and storage industries is steadily advancing.This article comprehensively considers the new energy revolution and the relevant plans of various countries,focuses on the principles,development status and research hot spots,and summarizes the different green hydrogen production technologies and paths.In addition,based on its assessment of current difficulties and bottlenecks in the production of green hydrogen and the overall global hydrogen energy development status,this article discusses the development of green hydrogen technologies.展开更多
Light cycle oil(LCO) with high content of poly-aromatics was difficult to upgrade and convert,which had hindered upgrading fuel quality to meet with the standard of automotive diesel for the purpose of sustainable dev...Light cycle oil(LCO) with high content of poly-aromatics was difficult to upgrade and convert,which had hindered upgrading fuel quality to meet with the standard of automotive diesel for the purpose of sustainable development.The hydrocracking behaviors of typical aromatics in LCO of naphthalene and tetralin were investigated over NiMo and CoMo catalysts.Several characterization methods including N2-adsoprtion and desorption,ammonia temperature-programmed desorption(NH3-TPD),Pyridine infrared spectroscopy(Py-IR),CO infrared spectroscopy(CO-IR),Raman and X-ray photoelectron spectroscopy(XPS) were applied to determine the properties of different catalysts.The results showed that CoMo catalyst with high concentration of S-edges could hydrosaturate more naphthalene to tetralin but exhibit lower yield of high-value light aromatics(carbon numbers less than 10) than NiMo catalyst.NiMo catalyst with high concentration of Mo-edges also presented a higher selectivity of converting naphthalene into cyclanes than CoMo catalyst.Subsequently,the naphthalene and LCO hydrocracking performances were also investigated over different catalysts systems.The activity evaluation and kinetic analysis results showed that the naphthalene hydrocracking conversion and the yield of light aromatics for CoMo-AY/NiMo-AY grading catalysts were higher than NiMo-AY/CoMo-AY grading catalysts at same condition.A stepwise reaction principle was proposed to explain the high efficiency of CoMo-AY/NiMoAY grading catalysts.Finally,the LCO hydrocracking evaluation results confirmed that CoMo-AY/NiMoAY catalysts grading system with low carbon deposition and high stability could remain high percentage of active phases,which was more efficient to convert LCO to high-octane gasoline.展开更多
Rational design of Zn-containing HZSM-5 zeolite(Zn/HZSM-5)with high reactivity and excellent aromatization performance for olefin aromatization is crucially desired.We develop a new and uncomplicated method to synthes...Rational design of Zn-containing HZSM-5 zeolite(Zn/HZSM-5)with high reactivity and excellent aromatization performance for olefin aromatization is crucially desired.We develop a new and uncomplicated method to synthesize Zn/HZSM-5(IMX/Z5)with superior aromatization performance in the paper.Compared to incipient wetness impregnation(IMP/Z5)and mechanical mixing(MIX/Z5),the asprepared IMX/Z5 presents a higher amount of surface ZnOH^(+)species(2.87%)while keeping identical bulk zinc content.As a result,more surface ZnOH^(+)favor both the aromatization of 1-hexene and cyclohexane dehydrogenation.For the two olefin aromatization pathways(hydrogen transfer and dehydrogenation),it is the first time found both the hydrogen transfer ability and the dehydrogenation ability increase linearly with the amount of surface ZnOH^(+)species while keeping identical bulk zinc content.We believe that the linear relationships are essential to design next generation olefin aromatization catalysts.展开更多
Injecting CO_(2)into the underground for oil displacement and shortage is an important technique for carbon capture,utilization and storage(CCUS).One of the main problems during the CO_(2)injection is the channeling p...Injecting CO_(2)into the underground for oil displacement and shortage is an important technique for carbon capture,utilization and storage(CCUS).One of the main problems during the CO_(2)injection is the channeling plugging.Finding an effective method for the gas channeling plugging is a critical issue in the CO_(2)EOR process.In this work,an acid-resistance microgel named dispersed particle gel(DPG)was characterized and its stability was tested in the CO_(2)environment.The microgel size selection strategies for the homogeneous and heterogeneous reservoirs were respectively investigated using the single core flooding and three parallel core flooding experiments.Moreover,the comparison of microgel alternate CO_(2)(MAC)injection and water alternate CO_(2)(WAC)injection in the dual core flooding experiments were presented for the investigation of the role of microgel on the conformance control in CO_(2)flooding process.The results have shown that the microgel featured with ANH and CAN groups can keep its morphology after aging 7 days in the CO_(2)environment.Where,the small microgel with unobstructed migration and large microgel with good plugging efficiency for the high permeability zone were respectively featured with the higher recovery factor in homogeneous and heterogeneous conditions,which indicate they are preferred used for the oil displacement and conformance control.Compared to WAC injection,MAC injection had a higher incremental recovery factor of 12.4%.It suggests the acid-resistance microgel would be a good candidate for the conformance control during CO_(2)flooding process.展开更多
More stringent environmental legislation imposes severe requirements to reduce the sulfur content in diesel to ultra-low levels with high efficient catalysts.In this paper,a series of CoMo/NDC@alumina catalysts were s...More stringent environmental legislation imposes severe requirements to reduce the sulfur content in diesel to ultra-low levels with high efficient catalysts.In this paper,a series of CoMo/NDC@alumina catalysts were synthesized by combination of the chemical vapor deposition of nitrogen-doped carbon(NDC)using 1,10-phenanthroline and co-impregnation of Mo and Co active components.The optimal catalyst with additive of 25%1,10-phenanthroline was screened by a series of property characterization and the hydrodesulfrization(HDS)active test.The amount of“CoMoS”active phase of the optimal CoMo/C3 catalyst increased 5.3%as compared with the CoMo/c-Al_(2)O_(3).The introduction of NDC improved the sulfidation degree of Mo by 21.8%as compared to the CoMo/c-Al_(2)O_(3) catalyst,which was beneficial to form more active sites.The HDS conversion of the NDC supported catalysts are higher than CoMo/c-Al_(2)O_(3) whether for the dibenzothiophene(DBT)or 4,6-dimethyl dibenzothiophene(4,6-DMDBT).Further hydroprocessing evaluation with Dagang diesel revealed that the CoMo/C3 catalyst possessed higher HDS property and the removal rate of DBTs in the diesel increased by 4%–11%as compared to the CoMo/c-Al_(2)O_(3) catalyst.展开更多
The rate performance and cycle stability of graphitized needle coke(GNC)as anode are still limited by the sluggish kinetics and volume expansion during the Li ions intercalation and de-intercalation process.Especially...The rate performance and cycle stability of graphitized needle coke(GNC)as anode are still limited by the sluggish kinetics and volume expansion during the Li ions intercalation and de-intercalation process.Especially,the output of energy density for lithium ion batteries(LIBs)is directly affected by the delithiation capacity below 0.5 V.Here,the mildly expanded graphitized needle coke(MEGNC)with the enlarged interlayer spacing from 0.346 to 0.352 nm is obtained by the two-step mild oxidation intercalation modification.The voltage plateau of MEGNC anode below 0.5 V is obviously broadened as compared to the initial GNC anode,contributing to the enhancement of Li storage below the low voltage plateau.Moreover,the coin full cell and pouch full cell configured with MEGNC anode exhibit much enhanced Li storage ability,energy density and better cycling stability than those full cells configured with GNC and commercial graphite anodes,demonstrating the practical application value of MEGNC.The superior anode behaviors of MEGNC including the increased effective capacity at low voltage and superior cyclic stability are mainly benefited from the enlarged interlayer spacing,which not only accelerates the Li ions diffusion rate,but also effectively alleviates the volume expansion and fragmentation during the Li ions intercalation process.In addition,the above result is further confirmed by the density functional theory simulation.This work provides an effective modification strategy for the NC-based graphite to enhance the delithiation capacity at a low voltage plateau,dedicated to improving the energy density and durability of LIBs.展开更多
A series of Al‐containing mesostructured cellular silica foams(Al‐MCFs)with different Si/Al molar ratios(x;x=10,20,30,40,or50)were prepared by a post synthetic method using aluminum isopropoxide as an alumina source...A series of Al‐containing mesostructured cellular silica foams(Al‐MCFs)with different Si/Al molar ratios(x;x=10,20,30,40,or50)were prepared by a post synthetic method using aluminum isopropoxide as an alumina source.The corresponding NiMo catalysts supported on Al‐MCFs were prepared and evaluated using dibenzothiophene(DBT)as the probe reactant.All the synthesized samples were characterized by small‐angle X‐ray scattering,scanning electron microscopy,nitrogen adsorption‐desorption,UV‐Vis diffuse reflectance spectroscopy,H2temperature‐programmed reduction,27Al MAS NMR,temperature‐programmed desorption of ammonia,pyridine‐FTIR,Raman spectroscopy,HRTEM,and X‐ray photoelectron spectroscopy to analyze their physicochemical properties and to gain a deeper insight of the interrelationship between the structures and the catalytic performance.The synthesis mechanism was proposed to involve the formation of Br?nsted acid and Lewis acid sites through the replacement of Si4+with Al3+.Aluminum introduced into MCFs by the post synthetic method has a negligible influence on the mesostructure of the parent MCFs but can form silicoaluminate materials with moderate Br?nsted acidity.For Al‐MCFs(x)materials,the detection of tetrahedrally coordinated Al3+cations demonstrated that the Al species had been successfully incorporated into the silicon frameworks.Furthermore,the DBT hydrodesulfurization(HDS)catalytic activity of the NiMo/Al‐MCFs(x)catalysts increased with increasing Si/Al molar ratio,and reached a maximum at a Si/Al molar ratio of20.The interaction of Ni and Mo species with the support became stronger when Al was incorporated into the MCFs supports.The high activities of the NiMo/Al‐MCFs catalysts for the DBT HDS were attributed to the suitable acidity properties and good dispersions of the Ni and Mo active phases.展开更多
N-alkyl imidazolium carbonate ionic liquids were employed to separate and recover naphthenic acid from model oils.The effects of the cationic and anionic structures of ionic liquids and operating conditions on the dea...N-alkyl imidazolium carbonate ionic liquids were employed to separate and recover naphthenic acid from model oils.The effects of the cationic and anionic structures of ionic liquids and operating conditions on the deacidification performance were investigated.The deacidification performance of traditional organic solvents was also investigated for comparison.The results indicated that the naphthenic acid could be completely removed from the model oil with a small mass ratio of ionic liquid to oil.The extracted naphthenic acid was regenerated with a recovery of up to 92%.In addition,imidazolium carbonate ionic liquids could be successfully regenerated and recycled.The mechanism of interaction between imidazole ionic liquids and the naphthenic acid molecules were explained by Gauss calculation.展开更多
In this work,a molecular-level kinetic model was built to simulate the vacuum residue(VR)coking process in a semi-batch laboratory-scale reaction kettle.A series of reaction rules for heavy oil coking were summarized ...In this work,a molecular-level kinetic model was built to simulate the vacuum residue(VR)coking process in a semi-batch laboratory-scale reaction kettle.A series of reaction rules for heavy oil coking were summarized and formulated based on the free radical reaction mechanism.Then,a large-scale molecularlevel reaction network was automatically generated by applying the reaction rules on the vacuum residue molecules.In order to accurately describe the physical change of each molecule in the reactor,we coupled the molecular-level kinetic model with a vapor–liquid phase separation model.The vapor–liquid phase separation model adopted the Peng-Robinson equation of state to calculate vapor–liquid equilibrium.A separation efficiency coefficient was introduced to represent the mass transfer during the phase separation.We used six sets of experimental data under various reaction conditions to regress the model parameters.The tuned model showed that there was an excellent agreement between the calculated values and experimental data.Moreover,we investigated the effect of reaction temperature and reaction time on the product yields.After a comprehensive evaluation of the reaction temperature and reaction time,the optimal reaction condition for the vacuum residue coking was also obtained.展开更多
Metal confinement catalyst Mo S_(2)/Pt@TD-6%Ti(TD,TS-1/Dendritic mesoporous silica nanoparticles composite) in dendritic hierarchical pore structures was synthesized and showed excellent sulfur-resistance performance ...Metal confinement catalyst Mo S_(2)/Pt@TD-6%Ti(TD,TS-1/Dendritic mesoporous silica nanoparticles composite) in dendritic hierarchical pore structures was synthesized and showed excellent sulfur-resistance performance and stabilities in catalytic hydrodesulfurization reactions of probe sulfide molecules.The Mo S_(2)/Pt@TD-6%Ti catalyst combines the concepts of Pt-confinement effect and hydrogen spillover of Pt noble metal.The modified micropores of Mo/Pt@TD-6%Ti only allow the migration and dissociation of small H_(2) molecules(0.289 nm),and effectively keep the sulfur-containing compounds(e.g.H_(2)S,0.362 nm) outside.Thus,the Mo S_(2)/Pt@TD-6%Ti catalyst exhibits higher DBT and 4,6-DMDBT HDS activities because of the synergistic effect of the strong H_(2) dissociation ability of Pt and desulfurization ability of Mo S_(2) with a lower catalyst cost.This new concept combining H2dissociation performance of noble metal catalyst with the desulfurization ability of transition metal sulfide Mo S_(2) can protect the noble metal catalyst avoiding deactivation and poison,and finally guarantee the higher activities for DBT and 4,6-DMDBT HDS.展开更多
Competition of hydrocarbon compounds with sulfides in gasoline has caused a not very high selectivity of sulfides in adsorption desulfurization so far,resulting in a reduction of catalyst lifetime as well as more sulf...Competition of hydrocarbon compounds with sulfides in gasoline has caused a not very high selectivity of sulfides in adsorption desulfurization so far,resulting in a reduction of catalyst lifetime as well as more sulfur oxide emissions.Tostudy the whole competitive process changing with the increase of the loading,the dynamic competition adsorption mechanism of cyclohexene and thiophene in siliceous faujasite(FAU)zeolite was analyzed by the Monte Carlo simulation.The results showed that with the increase of the loading,thiophene and cyclohexene had different performances before and after the inflection point of 40 molecule/UC.The adsorbates were distributed ideally at optimal sites during the stage that occurred before the inflection point,which is called the“optimal-displacement adsorption”stage.When approaching the inflection point,the competition became apparent and the displacement appeared accordingly,some thiophene molecules at S sites(refers to the sites inside the supercages)were displaced by cyclohexene.After the inflection point,the concentration of adsorbates at W sites(refers to the 12-membered ring connecting the supercages)was significantly reduced,whereas the adsorbates at S sites got more concentrated.The stage some cyclohexene molecules displaced by thiophene and inserted into the center of the supercage can be named as the“insertion-displacement adsorption”stage,and both the adsorption behavior and the competitive relationship became localized when the adsorption amount became saturated.This shift in the competitive adsorption mechanism was due to the sharp increase of interaction energy between the adsorbates.Besides,the increase in temperature and ratio of Si/Al will allow the adsorbates,especially thiophene molecules to occupy more adsorption sites,and it is beneficial to improve the desulfurization selectivity.展开更多
Climate change and emissions of greenhouse gases are becoming a threat to the earth environment,human lives and global health now.All of us,whether as individuals,commercial enterprises,institutions,or governments,sha...Climate change and emissions of greenhouse gases are becoming a threat to the earth environment,human lives and global health now.All of us,whether as individuals,commercial enterprises,institutions,or governments,share a collective responsibility to reduce and ultimately neutralize the greenhouse gas emissions by mid-to-late century.Carbon neutral goal will bring extensive and systematic changes in global energy consumptions,economic and social activities,and also offers a huge opportunity for the global chemical industries and chemical engineers to resolve this challenging global issue.展开更多
基金supported by China National Natural Science Foundation(22008260,21908123)。
文摘Mordenite with different Si/Al ratios were synthesized by solvent-free method and used for dimethyl ether(DME)carbonylation reaction.The influence of Si/Al ratio in the feedstock on the structure,porosity and acid sites were systematically investigated.The characterization results showed that with the increase of Si/Al ratio in the feedstock,part of silicon species fail to enter the skeleton and the specific surface area and pore volume of the samples decreased.The amount of weak acid and medium strong acid decreased alongside with the increasing Si/Al ratio,and the amount of strong acid slightly increased.The Al atoms preferentially enter the strong acid sites in the 8 member ring(MR)channel during the crystallization process.The high Si/Al ratio sample had more acid sites located in the 8 MR channel,leading to more active sites for carbonylation reaction and higher catalytic performance.Appropriately increasing the Si/Al ratio was beneficial for the improvement of carbonylation reaction activity over the mordenite(MOR)catalyst.
基金supported by National Natural Science Foundation of China(22021004).
文摘1-hexene aromatization is a promising technology to convert excess olefin in fluid catalytic cracking(FCC)gasoline to high-value benzene(B),toluene(T),and xylene.Besides,the increasing market demand of xylene has put forward higher requirements for new generation of catalyst.For increasing xylene yield in 1-hexene aromatization,the effect of mesopore structure and spatial distribution on product distribution and Zn loading was studied.Catalysts with different mesopore spatial distribution were prepared by post-treatment of parent HZSM-5 zeolite,including NaOH treatment,tetra-propylammonium hydroxide(TPAOH)treatment,and recrystallization.It was found the evenly distributed mesopore mainly prolongs the catalyst lifetime by enhancing diffusion properties but reduces the aromatics selectivity,as a result of damage of micropores close to the catalyst surface.While the selectivity of high-value xylene can be highly promoted when the mesopore is mainly distributed interior the catalyst.Besides,the state of loaded Zn was also affected by mesopores spatial distribution.On the optimized catalyst,the xylene selectivity was enhanced by 12.4%compared with conventional Zn-loaded parent HZSM-5 catalyst at conversion over 99%.It was attributed to the synergy effect of mesopores spatial distribution and optimized acid properties.This work reveals the role of mesopores in different spatial positions of 1-hexene aromatization catalysts in the reaction process and the influence on metal distribution,as well as their synergistic effect two on the improvement of xylene selectivity,which can improve our understanding of catalyst pore structure and be helpful for the rational design of high-efficient catalyst.
基金support from the National Key Basic Research Program of China(2021YFB3801300)the National Natural Science Foundation of China(22021004)。
文摘1.Introduction Human’s consumption of fossil fuel energy,accompanied by enormous quantities of carbon dioxide(CO_(2))emissions,is closely related to glacier melting,sea level rise,and the frequent occurrence of extreme weather in the 20th century.The Intergovernmental Panel on Climate Change(IPCC)put forward the goal of carbon neutrality in October 2018.So far,more than 130 countries and regions around the world have proposed their corresponding goal of carbon neutrality.China has also proposed to achieve a carbon peak and carbon neutrality[1].
基金financially supported by the National Natural Science Foundation of China (21673290, U1662103)~~
文摘Nanosize cerium-zirconium solid solution(CZO)with a special fluorite structure has received an increasing research interest due to their remarkable advantages such as excellent oxygen storage capacity and great flexibility in their composition and structure.By partial metal(including rare earth,transition,alkaline earth or other metal)doping into CZO,the physicochemical properties of these catalytic materials can be controllable adjusted for the study of specific reactions.To date,nanosize CZO has been prepared by co-precipitation,sol-gel,surfactant-assisted approach,solution combustion,micro-emulsion,high energy mechanical milling,etc.The advent of these methodologies has prompted researchers to construct well-defined networks with customized micromorphology and functionalities.In this review,we describe not only the basic structure and synthetic strategies of CZO,but also their relevant applications in environmental catalysis,such as the purification for CO,nitrogen oxides(NOx),volatile organic compounds(VOC),soot,hydrocarbon(HC),CO2 and solid particulate matters(PM),and some reaction mechanisms are also summarized.
基金financial support from the National Nature Science Foundation of China(22122113)National Key Research&Development Program of China(2021YFB4000405)。
文摘As a secondary energy with great commercialization potential,hydrogen energy has been widely studied due to the high calorific value,clean combustion products and various reduction methods.At present,the blueprint of hydrogen energy economy in the world is gradually taking shape.Compared with the traditional high-energy consuming methane steam reforming hydrogen production method,the electrocatalytic water splitting hydrogen production stands out among other process of hydrogen production owning to the mild reaction conditions,high-purity hydrogen generation and sustainable production process.Basing on current technical economy situation,the highly electric power cost limits the further promotion of electrocatalytic water splitting hydrogen production process.Consequently,the rational design and development of low overpotential and high stability electrocatalytic water splitting catalysts are critical toward the realization of low-cost hydrogen production technology.In this review,we summarize the existing hydrogen production methods,elaborate the reaction mechanism of the electrocatalytic water splitting reaction under acidic and alkaline conditions and the recent progress of the respective catalysts for the two half-reactions.The structure-activity relationship of the catalyst was deep-going discussed,together with the prospects of electrocatalytic water splitting and the current challenges,aiming at provide insights for electrocatalytic water splitting catalyst development and its industrial applications.
基金the supports from the National Natural Science Foundation of China(21822810,21476260,and 21838011).
文摘In this work,the octaethyl-porphyrins with different central metals(M-OEP,M=Ni,VO,Cu,Co)were used to investigate the ground-state molecular structure,electron distribution and UV-spectra properties on molecular level by density functional theory(DFT).The results showed that the calculation structure parameters of metalloporphyrins agreed well with the experimental value.According to the Natural Bond Orbital(NBO)analysis,the charge distribution of different metalloporphyrins was found that the charge values of the central metal M decreased with the order of VO<Ni<Co<Cu,while the bonding strength between M and the coordinating atom N was VO>Ni>Co>Cu.At the same time,the frontier molecular orbital calculations showed that the SOMO energy of VO(OEP)molecules in the open-shell system was higher than that of Co(OEP)and Cu(OEP),which means that its UV absorption characteristic peak would be red-shifted.In addition,the IEFPCM model of Time-dependent Density functional theory(TD-DFT)was further utilized to simulate the four substance in toluene solution:Co(OEP),Ni(OEP),Cu(OEP)and VO(OEP),and the Soret band peaks were calculated respectively as:382 nm,383 nm,391 nm and 401 nm.Furthermore,the quantitative simulation analysis of metalloporphyrins was combined with experimental data.It could be found that the location rules of the four kinds of metalloporphyrins calculated absorption characteristic peaks were consistent with the experimental ones,and the relative errors of each peak were within 3%.These methods used above provide a theoretical path for analyzing and identifying unknown porphyrin compounds in petroleum.
基金supported by the National Natural Science Foundation of China(22108303)Science Foundation of China University of Petroleum,Beijing(2462021YJRC002)。
文摘With increasing importance attached by the international community to global climate change and the pressing energy revolution,hydrogen energy,as a clean,efficient energy carrier,can serve as an important support for the establishment of a sustainable society.The United States and countries in Europe have already formulated relevant policies and plans for the use and development of hydrogen energy.While in China,aided by the“30·60”goal,the development of the hydrogen energy,production,transmission,and storage industries is steadily advancing.This article comprehensively considers the new energy revolution and the relevant plans of various countries,focuses on the principles,development status and research hot spots,and summarizes the different green hydrogen production technologies and paths.In addition,based on its assessment of current difficulties and bottlenecks in the production of green hydrogen and the overall global hydrogen energy development status,this article discusses the development of green hydrogen technologies.
基金supported by the National Natural Science Foundation of China (Nos. 21878330, 21676298)the National Science and Technology Major Project, the CNPC Key Research Project (2016E-0707)the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under Award (No. OSR-2019-CPF-4103.2)。
文摘Light cycle oil(LCO) with high content of poly-aromatics was difficult to upgrade and convert,which had hindered upgrading fuel quality to meet with the standard of automotive diesel for the purpose of sustainable development.The hydrocracking behaviors of typical aromatics in LCO of naphthalene and tetralin were investigated over NiMo and CoMo catalysts.Several characterization methods including N2-adsoprtion and desorption,ammonia temperature-programmed desorption(NH3-TPD),Pyridine infrared spectroscopy(Py-IR),CO infrared spectroscopy(CO-IR),Raman and X-ray photoelectron spectroscopy(XPS) were applied to determine the properties of different catalysts.The results showed that CoMo catalyst with high concentration of S-edges could hydrosaturate more naphthalene to tetralin but exhibit lower yield of high-value light aromatics(carbon numbers less than 10) than NiMo catalyst.NiMo catalyst with high concentration of Mo-edges also presented a higher selectivity of converting naphthalene into cyclanes than CoMo catalyst.Subsequently,the naphthalene and LCO hydrocracking performances were also investigated over different catalysts systems.The activity evaluation and kinetic analysis results showed that the naphthalene hydrocracking conversion and the yield of light aromatics for CoMo-AY/NiMo-AY grading catalysts were higher than NiMo-AY/CoMo-AY grading catalysts at same condition.A stepwise reaction principle was proposed to explain the high efficiency of CoMo-AY/NiMoAY grading catalysts.Finally,the LCO hydrocracking evaluation results confirmed that CoMo-AY/NiMoAY catalysts grading system with low carbon deposition and high stability could remain high percentage of active phases,which was more efficient to convert LCO to high-octane gasoline.
基金the support from the National Natural Science Foundation of China(21838011)。
文摘Rational design of Zn-containing HZSM-5 zeolite(Zn/HZSM-5)with high reactivity and excellent aromatization performance for olefin aromatization is crucially desired.We develop a new and uncomplicated method to synthesize Zn/HZSM-5(IMX/Z5)with superior aromatization performance in the paper.Compared to incipient wetness impregnation(IMP/Z5)and mechanical mixing(MIX/Z5),the asprepared IMX/Z5 presents a higher amount of surface ZnOH^(+)species(2.87%)while keeping identical bulk zinc content.As a result,more surface ZnOH^(+)favor both the aromatization of 1-hexene and cyclohexane dehydrogenation.For the two olefin aromatization pathways(hydrogen transfer and dehydrogenation),it is the first time found both the hydrogen transfer ability and the dehydrogenation ability increase linearly with the amount of surface ZnOH^(+)species while keeping identical bulk zinc content.We believe that the linear relationships are essential to design next generation olefin aromatization catalysts.
基金supported by the National Natural Science Foundation of China(52004305)the Postdoctoral Research Foundation of China(2021M693497)the Science Foundation of China University of Petroleum,Beijing(2462020XKBH006)。
文摘Injecting CO_(2)into the underground for oil displacement and shortage is an important technique for carbon capture,utilization and storage(CCUS).One of the main problems during the CO_(2)injection is the channeling plugging.Finding an effective method for the gas channeling plugging is a critical issue in the CO_(2)EOR process.In this work,an acid-resistance microgel named dispersed particle gel(DPG)was characterized and its stability was tested in the CO_(2)environment.The microgel size selection strategies for the homogeneous and heterogeneous reservoirs were respectively investigated using the single core flooding and three parallel core flooding experiments.Moreover,the comparison of microgel alternate CO_(2)(MAC)injection and water alternate CO_(2)(WAC)injection in the dual core flooding experiments were presented for the investigation of the role of microgel on the conformance control in CO_(2)flooding process.The results have shown that the microgel featured with ANH and CAN groups can keep its morphology after aging 7 days in the CO_(2)environment.Where,the small microgel with unobstructed migration and large microgel with good plugging efficiency for the high permeability zone were respectively featured with the higher recovery factor in homogeneous and heterogeneous conditions,which indicate they are preferred used for the oil displacement and conformance control.Compared to WAC injection,MAC injection had a higher incremental recovery factor of 12.4%.It suggests the acid-resistance microgel would be a good candidate for the conformance control during CO_(2)flooding process.
基金supports by National Natural Science Foundation of China(NSFC)(Nos.21878329 and 21476257)the National Key Research and Development Program Nanotechnology Specific Project(No.2020YFA0210900)Science Foundation of China University of Petroleum,Beijing(No.2462018QZDX04).
文摘More stringent environmental legislation imposes severe requirements to reduce the sulfur content in diesel to ultra-low levels with high efficient catalysts.In this paper,a series of CoMo/NDC@alumina catalysts were synthesized by combination of the chemical vapor deposition of nitrogen-doped carbon(NDC)using 1,10-phenanthroline and co-impregnation of Mo and Co active components.The optimal catalyst with additive of 25%1,10-phenanthroline was screened by a series of property characterization and the hydrodesulfrization(HDS)active test.The amount of“CoMoS”active phase of the optimal CoMo/C3 catalyst increased 5.3%as compared with the CoMo/c-Al_(2)O_(3).The introduction of NDC improved the sulfidation degree of Mo by 21.8%as compared to the CoMo/c-Al_(2)O_(3) catalyst,which was beneficial to form more active sites.The HDS conversion of the NDC supported catalysts are higher than CoMo/c-Al_(2)O_(3) whether for the dibenzothiophene(DBT)or 4,6-dimethyl dibenzothiophene(4,6-DMDBT).Further hydroprocessing evaluation with Dagang diesel revealed that the CoMo/C3 catalyst possessed higher HDS property and the removal rate of DBTs in the diesel increased by 4%–11%as compared to the CoMo/c-Al_(2)O_(3) catalyst.
基金supported by the National Natural Science Foundation of China(21776309,22122807 and 21706283)。
文摘The rate performance and cycle stability of graphitized needle coke(GNC)as anode are still limited by the sluggish kinetics and volume expansion during the Li ions intercalation and de-intercalation process.Especially,the output of energy density for lithium ion batteries(LIBs)is directly affected by the delithiation capacity below 0.5 V.Here,the mildly expanded graphitized needle coke(MEGNC)with the enlarged interlayer spacing from 0.346 to 0.352 nm is obtained by the two-step mild oxidation intercalation modification.The voltage plateau of MEGNC anode below 0.5 V is obviously broadened as compared to the initial GNC anode,contributing to the enhancement of Li storage below the low voltage plateau.Moreover,the coin full cell and pouch full cell configured with MEGNC anode exhibit much enhanced Li storage ability,energy density and better cycling stability than those full cells configured with GNC and commercial graphite anodes,demonstrating the practical application value of MEGNC.The superior anode behaviors of MEGNC including the increased effective capacity at low voltage and superior cyclic stability are mainly benefited from the enlarged interlayer spacing,which not only accelerates the Li ions diffusion rate,but also effectively alleviates the volume expansion and fragmentation during the Li ions intercalation process.In addition,the above result is further confirmed by the density functional theory simulation.This work provides an effective modification strategy for the NC-based graphite to enhance the delithiation capacity at a low voltage plateau,dedicated to improving the energy density and durability of LIBs.
基金supported by National Natural Science Foundation of China (21276277,U1463207)CNOOC Project+1 种基金CNPC major projectthe Opening Project of Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology (2015K003)~~
文摘A series of Al‐containing mesostructured cellular silica foams(Al‐MCFs)with different Si/Al molar ratios(x;x=10,20,30,40,or50)were prepared by a post synthetic method using aluminum isopropoxide as an alumina source.The corresponding NiMo catalysts supported on Al‐MCFs were prepared and evaluated using dibenzothiophene(DBT)as the probe reactant.All the synthesized samples were characterized by small‐angle X‐ray scattering,scanning electron microscopy,nitrogen adsorption‐desorption,UV‐Vis diffuse reflectance spectroscopy,H2temperature‐programmed reduction,27Al MAS NMR,temperature‐programmed desorption of ammonia,pyridine‐FTIR,Raman spectroscopy,HRTEM,and X‐ray photoelectron spectroscopy to analyze their physicochemical properties and to gain a deeper insight of the interrelationship between the structures and the catalytic performance.The synthesis mechanism was proposed to involve the formation of Br?nsted acid and Lewis acid sites through the replacement of Si4+with Al3+.Aluminum introduced into MCFs by the post synthetic method has a negligible influence on the mesostructure of the parent MCFs but can form silicoaluminate materials with moderate Br?nsted acidity.For Al‐MCFs(x)materials,the detection of tetrahedrally coordinated Al3+cations demonstrated that the Al species had been successfully incorporated into the silicon frameworks.Furthermore,the DBT hydrodesulfurization(HDS)catalytic activity of the NiMo/Al‐MCFs(x)catalysts increased with increasing Si/Al molar ratio,and reached a maximum at a Si/Al molar ratio of20.The interaction of Ni and Mo species with the support became stronger when Al was incorporated into the MCFs supports.The high activities of the NiMo/Al‐MCFs catalysts for the DBT HDS were attributed to the suitable acidity properties and good dispersions of the Ni and Mo active phases.
基金support of the National Natural Science Foundation of China(22078359,21276275).
文摘N-alkyl imidazolium carbonate ionic liquids were employed to separate and recover naphthenic acid from model oils.The effects of the cationic and anionic structures of ionic liquids and operating conditions on the deacidification performance were investigated.The deacidification performance of traditional organic solvents was also investigated for comparison.The results indicated that the naphthenic acid could be completely removed from the model oil with a small mass ratio of ionic liquid to oil.The extracted naphthenic acid was regenerated with a recovery of up to 92%.In addition,imidazolium carbonate ionic liquids could be successfully regenerated and recycled.The mechanism of interaction between imidazole ionic liquids and the naphthenic acid molecules were explained by Gauss calculation.
基金supported by the National Natural Science Foun-dation of China(22021004 and U19B2002).
文摘In this work,a molecular-level kinetic model was built to simulate the vacuum residue(VR)coking process in a semi-batch laboratory-scale reaction kettle.A series of reaction rules for heavy oil coking were summarized and formulated based on the free radical reaction mechanism.Then,a large-scale molecularlevel reaction network was automatically generated by applying the reaction rules on the vacuum residue molecules.In order to accurately describe the physical change of each molecule in the reactor,we coupled the molecular-level kinetic model with a vapor–liquid phase separation model.The vapor–liquid phase separation model adopted the Peng-Robinson equation of state to calculate vapor–liquid equilibrium.A separation efficiency coefficient was introduced to represent the mass transfer during the phase separation.We used six sets of experimental data under various reaction conditions to regress the model parameters.The tuned model showed that there was an excellent agreement between the calculated values and experimental data.Moreover,we investigated the effect of reaction temperature and reaction time on the product yields.After a comprehensive evaluation of the reaction temperature and reaction time,the optimal reaction condition for the vacuum residue coking was also obtained.
基金supported by the National Natural Science Foundation of China(No.21808079,21878330 and 21676298)Key Research and Development Program of Shandong Province(No.2019GSF109115)+2 种基金the National Science and Technology Major Project,the CNPC Key Research Project(2016E-0707)the King Abdullah University of Science and Technology(KAUST) Office of Sponsored Research(OSR) under Award(No.OSR-2019-CPF-4103.2)the Project of National Key R&D Program of China(2019YFC1907700)。
文摘Metal confinement catalyst Mo S_(2)/Pt@TD-6%Ti(TD,TS-1/Dendritic mesoporous silica nanoparticles composite) in dendritic hierarchical pore structures was synthesized and showed excellent sulfur-resistance performance and stabilities in catalytic hydrodesulfurization reactions of probe sulfide molecules.The Mo S_(2)/Pt@TD-6%Ti catalyst combines the concepts of Pt-confinement effect and hydrogen spillover of Pt noble metal.The modified micropores of Mo/Pt@TD-6%Ti only allow the migration and dissociation of small H_(2) molecules(0.289 nm),and effectively keep the sulfur-containing compounds(e.g.H_(2)S,0.362 nm) outside.Thus,the Mo S_(2)/Pt@TD-6%Ti catalyst exhibits higher DBT and 4,6-DMDBT HDS activities because of the synergistic effect of the strong H_(2) dissociation ability of Pt and desulfurization ability of Mo S_(2) with a lower catalyst cost.This new concept combining H2dissociation performance of noble metal catalyst with the desulfurization ability of transition metal sulfide Mo S_(2) can protect the noble metal catalyst avoiding deactivation and poison,and finally guarantee the higher activities for DBT and 4,6-DMDBT HDS.
基金the National Natural Science Foundation of China(21822810,21838011)the National Key Research and Development Program(2018YFC1902603).
文摘Competition of hydrocarbon compounds with sulfides in gasoline has caused a not very high selectivity of sulfides in adsorption desulfurization so far,resulting in a reduction of catalyst lifetime as well as more sulfur oxide emissions.Tostudy the whole competitive process changing with the increase of the loading,the dynamic competition adsorption mechanism of cyclohexene and thiophene in siliceous faujasite(FAU)zeolite was analyzed by the Monte Carlo simulation.The results showed that with the increase of the loading,thiophene and cyclohexene had different performances before and after the inflection point of 40 molecule/UC.The adsorbates were distributed ideally at optimal sites during the stage that occurred before the inflection point,which is called the“optimal-displacement adsorption”stage.When approaching the inflection point,the competition became apparent and the displacement appeared accordingly,some thiophene molecules at S sites(refers to the sites inside the supercages)were displaced by cyclohexene.After the inflection point,the concentration of adsorbates at W sites(refers to the 12-membered ring connecting the supercages)was significantly reduced,whereas the adsorbates at S sites got more concentrated.The stage some cyclohexene molecules displaced by thiophene and inserted into the center of the supercage can be named as the“insertion-displacement adsorption”stage,and both the adsorption behavior and the competitive relationship became localized when the adsorption amount became saturated.This shift in the competitive adsorption mechanism was due to the sharp increase of interaction energy between the adsorbates.Besides,the increase in temperature and ratio of Si/Al will allow the adsorbates,especially thiophene molecules to occupy more adsorption sites,and it is beneficial to improve the desulfurization selectivity.
文摘Climate change and emissions of greenhouse gases are becoming a threat to the earth environment,human lives and global health now.All of us,whether as individuals,commercial enterprises,institutions,or governments,share a collective responsibility to reduce and ultimately neutralize the greenhouse gas emissions by mid-to-late century.Carbon neutral goal will bring extensive and systematic changes in global energy consumptions,economic and social activities,and also offers a huge opportunity for the global chemical industries and chemical engineers to resolve this challenging global issue.