Coke oven gas(COG)is one of the most important by-products in steel industry,and the conversion of COG to value-added products has attracted much attention from both economic and environmental views.In this work,we us...Coke oven gas(COG)is one of the most important by-products in steel industry,and the conversion of COG to value-added products has attracted much attention from both economic and environmental views.In this work,we use the chemical looping reforming technology to produce pure H_(2) from COG.A series of La1-xSrxFeO_(3)(x?0,0.2,0.3,0.4,0.5,0.6)perovskite oxides were prepared as oxygen carriers for this purpose.The reduction behaviors of La1-xSrxFeO_(3) perovskite by different reducing gases(H_(2),CO,CH4 and the mixed gases)are investigated to discuss the competition effect of different components in COG for reacting with the oxygen carriers.The results show that reduction temperatures of H_(2) and CO are much lower than that of CH4,and high temperatures(>800℃)are requested for selective oxidation of methane to syngas.The co-existence of CO and H_(2) shows weak effect on the equilibrium of methane conversion at high temperatures,but the oxidation of methane to syngas can inhibit the consumption of CO and H_(2).The doping of suitable amounts of Sr in LaFeO_(3) perovskite(e.g.,La0.5Sr0.5FeO_(3))significantly promotes the activity for selective oxidation of methane to syngas and inhibits the formation of carbon deposition,obtaining both high methane conversion in the COG oxidation step and high hydrogen yield in the water splitting step.The La0.5Sr0.5FeO_(3) shows the highest methane conversion(67.82%),hydrogen yield(3.34 mmol g^(-1))and hydrogen purity(99.85%).The hydrogen yield in water splitting step is treble as high as the hydrogen consumption in reduction step.These results reveal that chemical looping reforming of COG to produce pure H_(2) is feasible,and an O_(2)-assistant chemical looping reforming process can further improves the redox stability of oxygen carrier.展开更多
A series of layered Mg-Al spinel supported Ce-Fe-Zr-O oxygen carriers were prepared for co-production of syngas and pure hydrogen via chemical looping steam reforming(CLSR).The presence of magnesium-aluminum layered d...A series of layered Mg-Al spinel supported Ce-Fe-Zr-O oxygen carriers were prepared for co-production of syngas and pure hydrogen via chemical looping steam reforming(CLSR).The presence of magnesium-aluminum layered double oxides(Mg Al-LDO)significantly increases the specific surface area of the mixed oxides,reduces the particle size of CeO2-based solid solution and promotes the dispersion of free Fe2O3.When reacting with methane,Mg Al-LDO supported oxygen carrier shows much lower temperature for methane oxidation than the pure CeFe-Zr-O sample,indicating enhanced low-temperature reactivity.Among different Ce-Fe-Zr-O(x)/Mg Al-LDO samples,the Ce-Fe-Zr-O(40 wt%)/Mg Al-LDO sample shows the best performance for the selective oxidation of methane to syngas and the H2 production by water splitting.After a long period of high temperature redox experiment,the Ce-Fe-Zr-O(40 wt%)/Mg Al-LDO oxygen carrier still shows high activity for syngas generation.The comparison on the morphology of the fresh and cycled oxygen carriers indicates that the Mg-Al spinel support still forms a stable skeleton structure with high dispersion of active components on the surface after the long-term cycling,which contributes to excellent redox stability of the Ce-Fe-Zr-O(40 wt%)/Mg Al-LDO oxygen carrier.展开更多
Dear Editor,Approximately 500 million individuals suffer from hearing loss worldwide. The number of hearing-impaired individuals is estimated to increase to 900 million by 2050. The etiology of hearing loss is complex.
基金This work was supported by the National Key R&D Program of China(2018YFB0605401)National Natural Science Foundation of China(Nos.51774159 and 51604137)the Qinglan Project of Kunming University of Science and Technology.
文摘Coke oven gas(COG)is one of the most important by-products in steel industry,and the conversion of COG to value-added products has attracted much attention from both economic and environmental views.In this work,we use the chemical looping reforming technology to produce pure H_(2) from COG.A series of La1-xSrxFeO_(3)(x?0,0.2,0.3,0.4,0.5,0.6)perovskite oxides were prepared as oxygen carriers for this purpose.The reduction behaviors of La1-xSrxFeO_(3) perovskite by different reducing gases(H_(2),CO,CH4 and the mixed gases)are investigated to discuss the competition effect of different components in COG for reacting with the oxygen carriers.The results show that reduction temperatures of H_(2) and CO are much lower than that of CH4,and high temperatures(>800℃)are requested for selective oxidation of methane to syngas.The co-existence of CO and H_(2) shows weak effect on the equilibrium of methane conversion at high temperatures,but the oxidation of methane to syngas can inhibit the consumption of CO and H_(2).The doping of suitable amounts of Sr in LaFeO_(3) perovskite(e.g.,La0.5Sr0.5FeO_(3))significantly promotes the activity for selective oxidation of methane to syngas and inhibits the formation of carbon deposition,obtaining both high methane conversion in the COG oxidation step and high hydrogen yield in the water splitting step.The La0.5Sr0.5FeO_(3) shows the highest methane conversion(67.82%),hydrogen yield(3.34 mmol g^(-1))and hydrogen purity(99.85%).The hydrogen yield in water splitting step is treble as high as the hydrogen consumption in reduction step.These results reveal that chemical looping reforming of COG to produce pure H_(2) is feasible,and an O_(2)-assistant chemical looping reforming process can further improves the redox stability of oxygen carrier.
基金supported by the National Key R&D Program of China(2018YFB0605401)National Natural Science Foundation of China(Nos.51774159 and 51604137)the Qinglan Project of Kunming University of Science and Technology。
文摘A series of layered Mg-Al spinel supported Ce-Fe-Zr-O oxygen carriers were prepared for co-production of syngas and pure hydrogen via chemical looping steam reforming(CLSR).The presence of magnesium-aluminum layered double oxides(Mg Al-LDO)significantly increases the specific surface area of the mixed oxides,reduces the particle size of CeO2-based solid solution and promotes the dispersion of free Fe2O3.When reacting with methane,Mg Al-LDO supported oxygen carrier shows much lower temperature for methane oxidation than the pure CeFe-Zr-O sample,indicating enhanced low-temperature reactivity.Among different Ce-Fe-Zr-O(x)/Mg Al-LDO samples,the Ce-Fe-Zr-O(40 wt%)/Mg Al-LDO sample shows the best performance for the selective oxidation of methane to syngas and the H2 production by water splitting.After a long period of high temperature redox experiment,the Ce-Fe-Zr-O(40 wt%)/Mg Al-LDO oxygen carrier still shows high activity for syngas generation.The comparison on the morphology of the fresh and cycled oxygen carriers indicates that the Mg-Al spinel support still forms a stable skeleton structure with high dispersion of active components on the surface after the long-term cycling,which contributes to excellent redox stability of the Ce-Fe-Zr-O(40 wt%)/Mg Al-LDO oxygen carrier.
基金supported by the National Natural Science Foundation of China (81520108015)。
文摘Dear Editor,Approximately 500 million individuals suffer from hearing loss worldwide. The number of hearing-impaired individuals is estimated to increase to 900 million by 2050. The etiology of hearing loss is complex.