期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Fabrication of pollution-free coal gangue-based catalytic material utilizing ferrous chloride as activator for efficient peroxymonosulfate activation
1
作者 Zhiming Sun Xinlin Wang +3 位作者 Shaoran Jia Jialin liang Xiaotian Ning chunquan li 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期103-118,共16页
Novel coal gangue-based persulfate catalyst(CG-FeCl_(2))was successfully synthesized by the means of calcinating under nitrogen atmosphere with the addition of ferrous chloride tetrahydrate(FeCl_(2)·_(4)H_(2)O).T... Novel coal gangue-based persulfate catalyst(CG-FeCl_(2))was successfully synthesized by the means of calcinating under nitrogen atmosphere with the addition of ferrous chloride tetrahydrate(FeCl_(2)·_(4)H_(2)O).The phase transformation of the prepared materials and gas products during the heating process are thoroughly investigated.It is suggested that ferrous chloride participated in the phase transformation and formed Si-O-Fe bonds.And the main gaseous products are H_(2)O,H_(2),and HCl during the heating process.Besides,the ability of CG-FeCl_(2) to activate peroxymonosulfate(PMS)for catalytic degradation of polycyclic aromatic hydrocarbons(PAHs)and phenol was deeply studied.More than 95%of naphthyl,phenanthrene and phenol were removed under optimizied conditions.In addition,1O_(2),·OH,and SO_(4)·−were involved in the CG-FeCl_(2)/PMS system from the free radical scavenging experiment,where 1O_(2) played a major role during the oxidation process.Furthermore,CG-FeCl_(2)/PMS system exhibited superior stability in a relatively wide pH range and the presence of common anion from related degradation experiments.Overall,the novel CG-FeCl_(2) is an efficient and environmentally friendly catalyst,displaying potential application prospect in the field of PAHs and phenol-contaminated wastewater treatment. 展开更多
关键词 Coal gangue Persulfate activation Advanced oxidation processes Polycyclic aromatic hydrocarbons Phenol Ferrous chloride
下载PDF
Research progress of CO_(2) capture and mineralization based on natural minerals
2
作者 Chenguang Qian chunquan li +5 位作者 Peng Huang Jialin liang Xin Zhang Jifa Wang Jianbing Wang Zhiming Sun 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1208-1227,共20页
Natural minerals,such as kaolinite,halloysite,montmorillonite,attapulgite,bentonite,sepiolite,forsterite,and wollastonite,have considerable potential for use in CO_(2) capture and mineralization due to their abundant ... Natural minerals,such as kaolinite,halloysite,montmorillonite,attapulgite,bentonite,sepiolite,forsterite,and wollastonite,have considerable potential for use in CO_(2) capture and mineralization due to their abundant reserves,low cost,excellent mechanical prop-erties,and chemical stability.Over the past decades,various methods,such as those involving heat,acid,alkali,organic amine,amino sil-ane,and ionic liquid,have been employed to enhance the CO_(2) capture performance of natural minerals to attain high specific surface area,a large number of pore structures,and rich active sites.Future research on CO_(2) capture by natural minerals will focus on the full utiliza-tion of the properties of natural minerals,adoption of suitable modification methods,and preparation of composite materials with high specific surface area and rich active sites.In addition,we provide a summary of the principle and technical route of direct and indirect mineralization of CO_(2) by natural minerals.This process uses minerals with high calcium and magnesium contents,such as forsterite(Mg_(2)SiO_(4)),serpentine[Mg_(3)Si_(2)O(OH)_(4)],and wollastonite(CaSiO_(3)).The research status of indirect mineralization of CO_(2) using hydro-chloric acid,acetic acid,molten salt,and ammonium salt as media is also introduced in detail.The recovery of additives and high-value-added products during the mineralization process to increase economic benefits is another focus of future research on CO_(2) mineralization by natural minerals. 展开更多
关键词 natural mineral carbon dioxide capture MODIFICATION composite material carbon dioxide mineralization
下载PDF
A review of the synthesis and application of zeolites from coal-based solid wastes 被引量:15
3
作者 Xiaoyu Zhang chunquan li +2 位作者 Shuilin Zheng Yonghao Di Zhiming Sun 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第1期1-21,共21页
Zeolite derived from coal-based solid wastes(coal gangue and coal fly ash)can overcome the environmental problems caused by coal-based solid wastes and achieve valuable utilization.In this paper,the physicochemical pr... Zeolite derived from coal-based solid wastes(coal gangue and coal fly ash)can overcome the environmental problems caused by coal-based solid wastes and achieve valuable utilization.In this paper,the physicochemical properties of coal gangue and coal fly ash are introduced.The mechanism and application characteristics of the pretreatment processes for zeolite synthesis from coal-based solid wastes are also introduced.The synthesis processes of coal-based solid waste zeolite and their advantages and disadvantages are summarized.Furthermore,the application characteristics of various coal-based solid waste zeolites and their common application fields are illustrated.Finally,we propose an alkaline fusion-assisted supercritical hydrothermal crystallization as an efficient method for synthesizing coal-based solid waste zeolites.In addition,more attention should be given to the recycling of alkaline waste liquid and the application of coal-based solid waste zeolites in the field of volatile organic compound adsorption removal. 展开更多
关键词 coal-based solid waste coal fly ash coal gangue ZEOLITE
下载PDF
Enhanced visible-light-assisted peroxymonosulfate activation over MnFe_(2)O_(4) modified g-C_(3)N_(4)/diatomite composite for bisphenol A degradation 被引量:2
4
作者 Xiangwei Zhang chunquan li +5 位作者 Ting Chen Ye Tan Xiaorui liu Fang Yuan Shuilin Zheng Zhiming Sun 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第6期1169-1179,共11页
The MnFe_(2) O_(4)/g-C_(3) N_(4)/diatomite composites(Mn/G/D) were prepared via a facile precipitation-calcination method in this study.The Mn/G/D possessed higher specific surface area,lower electron-hole pairs' ... The MnFe_(2) O_(4)/g-C_(3) N_(4)/diatomite composites(Mn/G/D) were prepared via a facile precipitation-calcination method in this study.The Mn/G/D possessed higher specific surface area,lower electron-hole pairs' recombination rate,as well as wider and stronger visible light absorption capacity.Since the synergistic effect between g-C_(3 )N_(4) and MnFe_(2) O_(4),the photogene rated electron could transfer from g-C3 N4 to MnFe_(2) O_(4),which could promote the migration of electrons as well as enhance the photocatalytic activity and peroxymonosulfate(PMS) activation efficiency.Mn/G/D-5% composite displayed the excellent degradation performance of bisphenol A(BPA) with the removal efficiency of 99.9% under PMS/Vis system,which was approximately 2.47 and 63.8 times as high as that of the Mn/G/D-5%/PMS and Mn/G/D-5%/Vis system,respectively.Moreover,negative electricity derived from diatomite surface also promoted the photogenerated carriers' migration,and the degradation rate constant was around 2.4 times higher than that of MnFe_(2) O_(4)/g-C_(3) N_(4)(Mn/G).In addition,quenching experiments showed that both radical pathway(h^(+),·OH,·O_(2)^(-)and SO_(4)·^(-)) and non-radical pathway(^(1) O_(2)) were responsible for the degradation of BPA. 展开更多
关键词 Bisphenol A PHOTOCATALYSIS PEROXYMONOSULFATE MnFe_(2)O_(4) g-C_(3)N_(4) DIATOMITE
下载PDF
Functionalization of diatomite with glycine and amino silane for formaldehyde removal 被引量:2
5
作者 Yonghao Di Fang Yuan +6 位作者 Xiaotian Ning Hongwei Jia Yangyu liu Xiangwei Zhang chunquan li Shuilin Zheng Zhiming Sun 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2022年第2期356-367,共12页
Two amino-functionalized diatomite(DE)composites modified by 3-aminopropyltriethoxysilane(APTS)or glycine(GLY)(i.e.,APTS/DE and GLY/DE)were successfully synthesized via the wet chemical method for the time-and cost-ef... Two amino-functionalized diatomite(DE)composites modified by 3-aminopropyltriethoxysilane(APTS)or glycine(GLY)(i.e.,APTS/DE and GLY/DE)were successfully synthesized via the wet chemical method for the time-and cost-efficient removal of indoor formaldehyde(HCHO).First,the optimal preparation conditions of the two composites were determined,and then their microstructures and morphologies were characterized and analyzed.Batch HCHO adsorption experiments with the two types of amino-modified DE composites were also conducted to compare their adsorption properties.Experimental results indicated that the pseudo-second-order kinetic and Langmuir isotherm models could well describe the adsorption process,and the maximum adsorption capacities of APTS/DE and GLY/DE prepared under optimal conditions at 20°C were 5.83 and 1.14 mg·g^(-1),respectively.The thermodynamic parameters of the composites indicated that the adsorption process was spontaneous and exothermic.The abundant amine groups grafted on the surface of DE were derived from the Schiff base reaction and were essential for the high-efficient adsorption performance toward HCHO. 展开更多
关键词 DIATOMITE 3-AMINOPROPYLTRIETHOXYSILANE GLYCINE adsorption FORMALDEHYDE
下载PDF
Single-atomic Pt sites anchored on defective Ti0_(2) nanosheets as a superior photocatalyst for hydrogen evolution 被引量:4
6
作者 Xiaolong Hu Junying Song +5 位作者 Jingli Luo Hao Zhang Zhiming Sun chunquan li Shuilin Zheng Qingxia liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第11期1-10,I0001,共11页
Single-atomic site catalysts have drawn considerable attention because of their maximum atom-utilization efficiency and excellent catalytic activity.In this work,a highly active single-atomic Pt site photocatalyst was... Single-atomic site catalysts have drawn considerable attention because of their maximum atom-utilization efficiency and excellent catalytic activity.In this work,a highly active single-atomic Pt site photocatalyst was synthesized through employing defective Ti0_(2) nanosheets as solid support for photo-catalytic water splitting.It indicated that the surface oxygen vacancies on defective Ti0_(2) nanosheets could effectively stabilize the single-atomic Pt sites through constructing a three-center Ti-Pt-Ti structure.The Ti-Pt-Ti structure can hold the stability of isolated single-atomic Pt sites and facilitate the separation and transfer of photoinduced charge carriers,thereby greatly improving the photocatalytic H2 evolution.Notably,our synthesized photocatalyst exhibited a remarkably enhanced H2 evolution performance,and the H2 production rate is up to 13460.7μmol h^(-1)·g^(-1),which is up to around 29.0 and 4.7 times higher than those of Ti0_(2) nanosheets and Pt nanoparticles-Ti0_(2).In addition,a plausible enhanced reaction mechanism was also proposed combining with photo-electrochemical characterizations and density functional theoiy(DFT)calculation results.Ultimately,it is believed that this work highlights the benefits of a single-site catalyst and paves the way to rationally design the highly active and stable single-atomic site photocatalysts on metal oxide support. 展开更多
关键词 Single atomic site Pt H_(2)evolution Defect Oxygen vacancies Ti0_(2)nanosheets
下载PDF
Hierarchical assembly of highly efficient visible-light-driven Ag/g-C_(3)N_(4)/kaolinite composite photocatalyst for the degradation of ibuprofen 被引量:11
7
作者 Zhiming Sun Xiangwei Zhang +5 位作者 Xiongbo Dong Xiaorui liu Ye Tan Fang Yuan Shuilin Zheng chunquan li 《Journal of Materiomics》 SCIE EI 2020年第3期582-592,共11页
A novel Ag/g-C_(3)N_(4)/kaolinite composite photocatalyst was fabricated for the first time through a two-step assembly strategy by employing in situ calcination and a photodeposition process.The synthesized Ag/g-C_(3... A novel Ag/g-C_(3)N_(4)/kaolinite composite photocatalyst was fabricated for the first time through a two-step assembly strategy by employing in situ calcination and a photodeposition process.The synthesized Ag/g-C_(3)N_(4)/kaolinite composite reached a higher degradation rate of ibuprofen(IBP)with a reaction rate constant of 0.0113 min^(-1) at an Ag content of 7% under visible-light irradiation,which was approximately 1.87 times that of the Ag/g-C_(3)N_(4) composite.Based on the physicochemical properties,the enhanced photocatalytic activity was attributed to the stronger adsorption property,wider photoresponse range and more efficient separation and transfer of electron-hole pairs.Furthermore,the incorporation of monodispersed Ag nanoparticles onto the g-C_(3)N_(4)/kaolinite sheets provided more reactive sites for the IBP degradation.In addition,according to the EPR study and trapping experiments,it was demonstrated that holes(h^(+))should be the key reactive species.A possible pathway of IBP degradation was also proposed based on the detected intermediates.Overall,the results of this work may facilitate the design of a novel visible-light-driven photocatalyst with a high efficiency that is derived from a natural mineral for environmental remediation. 展开更多
关键词 Photocatalyst AG nanoparticles g-C_(3)N_(4) KAOLINITE IBUPROFEN Visible-light-driven
原文传递
Diatomite supported nano zero valent iron with 3D network for peroxymonosulfate activation in efficient degradation of bisphenol A 被引量:4
8
作者 Ye Tan Shuilin Zheng +3 位作者 Yonghao Di chunquan li Runze Bian Zhiming Sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第36期57-69,共13页
Diatomite supported nano zero valent iron(n ZVI)catalyst(NDA)with complex network structure was prepared via a mild reduction precipitation method in this work.The pore structure and pore distribution of NDA can be re... Diatomite supported nano zero valent iron(n ZVI)catalyst(NDA)with complex network structure was prepared via a mild reduction precipitation method in this work.The pore structure and pore distribution of NDA can be regulated and controlled through adjusting the loading amount of n ZVI.In general,the nano three-dimensional network formed by n ZVI and diatomite channels greatly increase the specific surface area and pore volume of NDA,and further formed more active sites,which made NDA have better performance in activating PMS to degrade BPA than pure n ZVI.The pseudo-first-order reaction rate constant of 50-NDA(50%-n ZVI/diatomite)is almost 3 times higher than that of pure n ZVI.Besides,the electron paramagnetic resonance(EPR)and radical quenching experiments showed that the activation process was dominated by the sulfate radical(SO_(4)^(-))and hydroxyl radical(·OH)produced by Fe;oxidation.The generated electrons promote the self-decomposition of PMS to produce singlet oxygen(^(1)O_(2)),and then the valence state of iron changes to produce free radicals.In addition,the possible degradation pathway of BPA was inferred from the intermediate products identified by liquid chromatograph-mass spectrometer(LC-MS).This study provides a novel strategy for the design and preparation of three-dimensional composite catalysts derived from natural mineral. 展开更多
关键词 NZVI DIATOMITE PEROXYMONOSULFATE Sulfate radical Bisphenol A
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部