The overall performance of metal catalysts can be efficiently adjusted by modifying carbon carriers with different valence sulfur precursors.The wet impregnation technique successfully prepared carbon material carrier...The overall performance of metal catalysts can be efficiently adjusted by modifying carbon carriers with different valence sulfur precursors.The wet impregnation technique successfully prepared carbon material carriers doped with varying sources of sulfur(Na_(2)SO_(4),NaHSO_(3),Na_(2)S·9H_(2)O).Palladium carbon catalysts doped with different sulfur precursors had been prepared with the aid of the liquid-phase reduction method of the selective hydrogenation of o-chloronitrobenzene(o-CNB)to o-chloroaniline(o-CAN).The catalyst prepared for Na_(2)S·9H_(2)O as a precursor has excellent performance,and the selectivity for o-CAN is more than 99.9%at 100%conversion.In addition,the characterization results show that with the decrease of S valence,the electronic effect between S and Pd increases,and the outer electron shift of Pd increases,which reduces the adsorption and dissociation ability of Pd to hydrogen,resulting in excellent selectivity.The effects provided a good idea for the hydrogenation of o-CNB and a different point of view on sulfur doping in a variety of hydrogenation reactions.展开更多
In order to improve the catalytic performance of the nitrobenzene hydrogenation rearrangement to prepare p-aminophenol,a bimetallic Pt-Ni/C(PNC)catalyst was synthesized.Taking advantage of the synergistic effect of Ni...In order to improve the catalytic performance of the nitrobenzene hydrogenation rearrangement to prepare p-aminophenol,a bimetallic Pt-Ni/C(PNC)catalyst was synthesized.Taking advantage of the synergistic effect of Ni and Pt to enhance product selectivity and catalytic performance stability,the electrons in Ni are moved to Pt by the electron effect,which affects the catalyst’s ability to activate H_(2)as well as the amount of hydrogen activated.Furthermore,due to the strong Pt(5d)-Ni(3d)coupling effect,Ni can effectively maintain Pt stability in the acidic system and reduce Pt dissolution.The stability of the PNC can be found to be greatly enhanced compared to the Pt/C(PC)catalyst,and p-aminophenol selectivity is greatly enhanced,showing excellent catalytic performance.展开更多
The selective hydrogenation of halogenated nitrobenzene over noble metal catalysts(Pd, Pt, and Ir) has attracted much attention owing to its high efficiency and environmental friendliness. However, the effect of size ...The selective hydrogenation of halogenated nitrobenzene over noble metal catalysts(Pd, Pt, and Ir) has attracted much attention owing to its high efficiency and environmental friendliness. However, the effect of size on the catalytic performance varies among different metal catalysts. In this study, sub-nano(<3 nm) Ir and Pd particles were prepared, and their catalytic properties for hydrogenation of halogenated nitrobenzene were evaluated.Results show that high selectivity(N 99%) was achieved over small Ir nanoparticles, in which the selectivity over the Pd with same size was much lower than that on Ir nanoparticles. Meanwhile, Ir and Pd have different hydrogen consumption rates and reaction rates. Density functional theory calculations showed that p-chloronitrobenzene(CNB) has different adsorption properties on Ir and Pd. The distance between oxygen(cholorine) and Ir is much shorter(longer) than that between oxygen and Pd. The reaction barriers of dechlorination of p-CNB and p-chloroaniline over different Ir models are much larger than those on Pd. Especially,lower coordination of Ir leads to larger barriers of dechlorination reaction. These theoretical results explain the difference between Ir and Pd on hydrogenation of halogenated nitrobenzene.展开更多
基金financially supported by the National Natural Science Foundation of China(22078292,22008212,U20A20119,21776258)。
文摘The overall performance of metal catalysts can be efficiently adjusted by modifying carbon carriers with different valence sulfur precursors.The wet impregnation technique successfully prepared carbon material carriers doped with varying sources of sulfur(Na_(2)SO_(4),NaHSO_(3),Na_(2)S·9H_(2)O).Palladium carbon catalysts doped with different sulfur precursors had been prepared with the aid of the liquid-phase reduction method of the selective hydrogenation of o-chloronitrobenzene(o-CNB)to o-chloroaniline(o-CAN).The catalyst prepared for Na_(2)S·9H_(2)O as a precursor has excellent performance,and the selectivity for o-CAN is more than 99.9%at 100%conversion.In addition,the characterization results show that with the decrease of S valence,the electronic effect between S and Pd increases,and the outer electron shift of Pd increases,which reduces the adsorption and dissociation ability of Pd to hydrogen,resulting in excellent selectivity.The effects provided a good idea for the hydrogenation of o-CNB and a different point of view on sulfur doping in a variety of hydrogenation reactions.
基金funded by the National Natural Science Foundation of China(U20A20119,22078292 and 22008212)。
文摘In order to improve the catalytic performance of the nitrobenzene hydrogenation rearrangement to prepare p-aminophenol,a bimetallic Pt-Ni/C(PNC)catalyst was synthesized.Taking advantage of the synergistic effect of Ni and Pt to enhance product selectivity and catalytic performance stability,the electrons in Ni are moved to Pt by the electron effect,which affects the catalyst’s ability to activate H_(2)as well as the amount of hydrogen activated.Furthermore,due to the strong Pt(5d)-Ni(3d)coupling effect,Ni can effectively maintain Pt stability in the acidic system and reduce Pt dissolution.The stability of the PNC can be found to be greatly enhanced compared to the Pt/C(PC)catalyst,and p-aminophenol selectivity is greatly enhanced,showing excellent catalytic performance.
基金Supported by the National Natural Science Foundation of China(Nos.21473159 and91334013)
文摘The selective hydrogenation of halogenated nitrobenzene over noble metal catalysts(Pd, Pt, and Ir) has attracted much attention owing to its high efficiency and environmental friendliness. However, the effect of size on the catalytic performance varies among different metal catalysts. In this study, sub-nano(<3 nm) Ir and Pd particles were prepared, and their catalytic properties for hydrogenation of halogenated nitrobenzene were evaluated.Results show that high selectivity(N 99%) was achieved over small Ir nanoparticles, in which the selectivity over the Pd with same size was much lower than that on Ir nanoparticles. Meanwhile, Ir and Pd have different hydrogen consumption rates and reaction rates. Density functional theory calculations showed that p-chloronitrobenzene(CNB) has different adsorption properties on Ir and Pd. The distance between oxygen(cholorine) and Ir is much shorter(longer) than that between oxygen and Pd. The reaction barriers of dechlorination of p-CNB and p-chloroaniline over different Ir models are much larger than those on Pd. Especially,lower coordination of Ir leads to larger barriers of dechlorination reaction. These theoretical results explain the difference between Ir and Pd on hydrogenation of halogenated nitrobenzene.