We analyzed the two hypervariable segments HVS-I and HVS-II of 108 Chinese Tu ethnic minority group samples for forensic and population genetics purposes, Comparing with Anderson sequence, 79 polymorphic loci in HVS-I...We analyzed the two hypervariable segments HVS-I and HVS-II of 108 Chinese Tu ethnic minority group samples for forensic and population genetics purposes, Comparing with Anderson sequence, 79 polymorphic loci in HVS-I and 40 in HVS-II were found in Chinese Tu ethnic minority group mtDNA sequences, and 90 and 64 haplotypes were then defined. Haplotype diversity and the mean pairwise differences were 0.9903±0.0013 and 5.7785 in HVS-I, and 0.9777±0.0013 and 3.5819 in HVS-II, respectively. By analyzing the hypervariable domain from nucleotide 1,6180 to 1,6193 in HVS-I, we defined some new types of sequence variations. We also compared the relationship between Tu population and other populations using mtDNA HVS-I sequences. According to Rst genetic distances, the phylogenetic tree showed that the Tu population, the Xi'an Han population, the Chinese Korean, and the Mongol ethnic group were in a clade. This indicated a close genetic relationship between them. There were far relations between the Tu population and other Chinese southern Han populations, Siberian, European, African, and other foreign populations. The results suggest that Tu population has a multi-origin and has also merged with other local populations.展开更多
Due to the rising need for clean and renewable energy,green materials including biochar are becoming increasingly popular in the field of energy storage and conversion.However,the lack of highly active and stable elec...Due to the rising need for clean and renewable energy,green materials including biochar are becoming increasingly popular in the field of energy storage and conversion.However,the lack of highly active and stable electrode materials hinders the development of stable energy supplies and efficient hydrogen production devices.Herein,we fabricated stable,conductive,and multifunctional chitosan microspheres by a facile emulsion crosslinking solution growth and hydrothermal sulphuration methods as multifunctional electrodes for overall water splitting driven by supercapacitors.This material possessed three-dimensional layered conductors with favorable heterojunction interface,ample hollow and porous structures.It presented remarkably enhanced electrochemical and catalytic activity for both supercapacitors and overall water electrolysis.The asymmetric supercapacitors based on chitosan biochar microsphere achieved high specific capacitance(260.9 F g^(−1) at 1 A g^(−1))and high energy density(81.5W h kg^(−1))at a power density of 978.4 W kg^(−1).The chitosan biochar microsphere as an electrode for electrolyze only required a low cell voltage of 1.49 V to reach a current density of 10 mA cm^(−2),and achieved excellent stability with 30 h continuous test at 20 mA cm^(−2).Then,we assembled a coupled energy storage device and hydrogen production system,the SCs as a backup power source availably guaranteed the continuous operation of overall water electrolysis.Our study provides valuable perspectives into the practical design of both integrated biochar-based electrode materials and coupled energy storage devices with energy conversion and storage in practical.展开更多
文摘We analyzed the two hypervariable segments HVS-I and HVS-II of 108 Chinese Tu ethnic minority group samples for forensic and population genetics purposes, Comparing with Anderson sequence, 79 polymorphic loci in HVS-I and 40 in HVS-II were found in Chinese Tu ethnic minority group mtDNA sequences, and 90 and 64 haplotypes were then defined. Haplotype diversity and the mean pairwise differences were 0.9903±0.0013 and 5.7785 in HVS-I, and 0.9777±0.0013 and 3.5819 in HVS-II, respectively. By analyzing the hypervariable domain from nucleotide 1,6180 to 1,6193 in HVS-I, we defined some new types of sequence variations. We also compared the relationship between Tu population and other populations using mtDNA HVS-I sequences. According to Rst genetic distances, the phylogenetic tree showed that the Tu population, the Xi'an Han population, the Chinese Korean, and the Mongol ethnic group were in a clade. This indicated a close genetic relationship between them. There were far relations between the Tu population and other Chinese southern Han populations, Siberian, European, African, and other foreign populations. The results suggest that Tu population has a multi-origin and has also merged with other local populations.
基金Beijing Natural Science Foundation from Pan Chen.
文摘Due to the rising need for clean and renewable energy,green materials including biochar are becoming increasingly popular in the field of energy storage and conversion.However,the lack of highly active and stable electrode materials hinders the development of stable energy supplies and efficient hydrogen production devices.Herein,we fabricated stable,conductive,and multifunctional chitosan microspheres by a facile emulsion crosslinking solution growth and hydrothermal sulphuration methods as multifunctional electrodes for overall water splitting driven by supercapacitors.This material possessed three-dimensional layered conductors with favorable heterojunction interface,ample hollow and porous structures.It presented remarkably enhanced electrochemical and catalytic activity for both supercapacitors and overall water electrolysis.The asymmetric supercapacitors based on chitosan biochar microsphere achieved high specific capacitance(260.9 F g^(−1) at 1 A g^(−1))and high energy density(81.5W h kg^(−1))at a power density of 978.4 W kg^(−1).The chitosan biochar microsphere as an electrode for electrolyze only required a low cell voltage of 1.49 V to reach a current density of 10 mA cm^(−2),and achieved excellent stability with 30 h continuous test at 20 mA cm^(−2).Then,we assembled a coupled energy storage device and hydrogen production system,the SCs as a backup power source availably guaranteed the continuous operation of overall water electrolysis.Our study provides valuable perspectives into the practical design of both integrated biochar-based electrode materials and coupled energy storage devices with energy conversion and storage in practical.