Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely u...Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely utilized to investigate neuro biological markers after mild traumatic brain injury.This approach has emerged as a promising tool for investigating the pathogenesis of mild traumatic brain injury.G raph theory is a quantitative method of analyzing complex networks that has been widely used to study changes in brain structure and function.However,most previous mild traumatic brain injury studies using graph theory have focused on specific populations,with limited exploration of simultaneous abnormalities in structural and functional connectivity.Given that mild traumatic brain injury is the most common type of traumatic brain injury encounte red in clinical practice,further investigation of the patient characteristics and evolution of structural and functional connectivity is critical.In the present study,we explored whether abnormal structural and functional connectivity in the acute phase could serve as indicators of longitudinal changes in imaging data and cognitive function in patients with mild traumatic brain injury.In this longitudinal study,we enrolled 46 patients with mild traumatic brain injury who were assessed within 2 wee ks of injury,as well as 36 healthy controls.Resting-state functional magnetic resonance imaging and diffusion-weighted imaging data were acquired for graph theoretical network analysis.In the acute phase,patients with mild traumatic brain injury demonstrated reduced structural connectivity in the dorsal attention network.More than 3 months of followup data revealed signs of recovery in structural and functional connectivity,as well as cognitive function,in 22 out of the 46 patients.Furthermore,better cognitive function was associated with more efficient networks.Finally,our data indicated that small-worldness in the acute stage could serve as a predictor of longitudinal changes in connectivity in patients with mild traumatic brain injury.These findings highlight the importance of integrating structural and functional connectivity in unde rstanding the occurrence and evolution of mild traumatic brain injury.Additionally,exploratory analysis based on subnetworks could serve a predictive function in the prognosis of patients with mild traumatic brain injury.展开更多
Neuro myelitis optica spectrum disorder(NMOSD) is an inflammatory demyelinating disease of the central nervous system.However,whether and how cortical changes occur in NMOSD with normal-appearing brain tissue,or wheth...Neuro myelitis optica spectrum disorder(NMOSD) is an inflammatory demyelinating disease of the central nervous system.However,whether and how cortical changes occur in NMOSD with normal-appearing brain tissue,or whether any cortical changes correlate with clinical chara cteristics,is not completely clear.The current study recruited 43 patients with NMOSD who had normal-appearing brain tissue and 45 healthy controls matched for age,sex,and educational background from December 2020 to February 2022.A surface-based morphological analysis of high-resolution T1-weighted structural magnetic resonance images was used to calculate the cortical thickness,sulcal depth,and gyrification index.Analysis showed that cortical thickness in the bilate ral rostral middle frontal gyrus and left superior frontal gyrus was lower in the patients with NMOSD than in the control participants.Subgroup analysis of the patients with NMOSD indicated that compared with those who did not have any optic neuritis episodes,those who did have such episodes exhibited noticeably thinner cortex in the bilateral cuneus,superior parietal co rtex,and pericalcarine co rtex.Correlation analysis indicated that co rtical thickness in the bilateral rostral middle frontal gyrus was positively correlated with scores on the Digit Symbol Substitution Test and negatively correlated with scores on the Trail Making Test and the Expanded Disability Status Scale.These results are evidence that cortical thinning of the bilateral regional frontal cortex occurs in patients with NMOSD who have normal-appearing brain tissue,and that the degree of thinning is correlated with clinical disability and cognitive function.These findings will help im prove our understanding of the imaging chara cteristics in NMOSD and their potential clinical significance.展开更多
Phenol-containing wastewater is typical organic wastewater,and its treatment is arduous.An advanced method to treat this type of wastewater is persulfate activation.Environmentally friendly ceriummanganese composite o...Phenol-containing wastewater is typical organic wastewater,and its treatment is arduous.An advanced method to treat this type of wastewater is persulfate activation.Environmentally friendly ceriummanganese composite oxide materials were synthesized by hydrothermal method and applied to the phenol degradation process.Various ratios of cerium and manganese,as well as the amount of sodium hydroxide,were investigated.The solid solutions of cerium and manganese were formed and confirmed by X-ray diffraction(XRD) and transmission electron microscopy(TEM).H_(2)-temperature programmed reduction(H_(2)-TPR) and X-ray photoelectron spectroscopy(XPS) were utilized to analyze the synergistic effect of cerium and manganese.It is found that there is a transformation between Ce^(4+)/Ce^(3+) and Mn^(2+)/Mn^(3+),which makes the material more trivalent manganese and thereby increases the catalytic activity.The effect of materials in catalyzing phenol degradation by peroxodisulfate(PDS) under various preparation conditions is discussed and high-effciency removal of phenol can be achieved and the removal rate at 180 min is close to 100%.The kinetic of this process was investigated and activation energy of phenol degradation is 62,35 kJ/mol.The degradation pathway of phenol was studied and it is found that PDS can be activated by low metal ions and the OH and SO_(4·)^(-)radicals play crucial roles according to the quenching experiments.展开更多
基金supported by the National Natural Science Foundation of China,Nos.81671671(to JL),61971451(to JL),U22A2034(to XK),62177047(to XK)the National Defense Science and Technology Collaborative Innovation Major Project of Central South University,No.2021gfcx05(to JL)+6 种基金Clinical Research Cen terfor Medical Imaging of Hunan Province,No.2020SK4001(to JL)Key Emergency Project of Pneumonia Epidemic of Novel Coronavirus Infection of Hu nan Province,No.2020SK3006(to JL)Innovative Special Construction Foundation of Hunan Province,No.2019SK2131(to JL)the Science and Technology lnnovation Program of Hunan Province,Nos.2021RC4016(to JL),2021SK53503(to ML)Scientific Research Program of Hunan Commission of Health,No.202209044797(to JL)Central South University Research Program of Advanced Interdisciplinary Studies,No.2023Q YJC020(to XK)the Natural Science Foundation of Hunan Province,No.2022JJ30814(to ML)。
文摘Patients with mild traumatic brain injury have a diverse clinical presentation,and the underlying pathophysiology remains poorly understood.Magnetic resonance imaging is a non-invasive technique that has been widely utilized to investigate neuro biological markers after mild traumatic brain injury.This approach has emerged as a promising tool for investigating the pathogenesis of mild traumatic brain injury.G raph theory is a quantitative method of analyzing complex networks that has been widely used to study changes in brain structure and function.However,most previous mild traumatic brain injury studies using graph theory have focused on specific populations,with limited exploration of simultaneous abnormalities in structural and functional connectivity.Given that mild traumatic brain injury is the most common type of traumatic brain injury encounte red in clinical practice,further investigation of the patient characteristics and evolution of structural and functional connectivity is critical.In the present study,we explored whether abnormal structural and functional connectivity in the acute phase could serve as indicators of longitudinal changes in imaging data and cognitive function in patients with mild traumatic brain injury.In this longitudinal study,we enrolled 46 patients with mild traumatic brain injury who were assessed within 2 wee ks of injury,as well as 36 healthy controls.Resting-state functional magnetic resonance imaging and diffusion-weighted imaging data were acquired for graph theoretical network analysis.In the acute phase,patients with mild traumatic brain injury demonstrated reduced structural connectivity in the dorsal attention network.More than 3 months of followup data revealed signs of recovery in structural and functional connectivity,as well as cognitive function,in 22 out of the 46 patients.Furthermore,better cognitive function was associated with more efficient networks.Finally,our data indicated that small-worldness in the acute stage could serve as a predictor of longitudinal changes in connectivity in patients with mild traumatic brain injury.These findings highlight the importance of integrating structural and functional connectivity in unde rstanding the occurrence and evolution of mild traumatic brain injury.Additionally,exploratory analysis based on subnetworks could serve a predictive function in the prognosis of patients with mild traumatic brain injury.
基金Clinical Research Center for Medical Imaging in Hunan Province,No.2020SK4001Science and Technology Innovation Program of Hunan Province,No.2021RC4016Accurate Localization Study of Mild Traumatic Brain Injury Based on Deep Learning Through Multimodal Image and Neural Network,No.2021gfcx05 (all to JL)。
文摘Neuro myelitis optica spectrum disorder(NMOSD) is an inflammatory demyelinating disease of the central nervous system.However,whether and how cortical changes occur in NMOSD with normal-appearing brain tissue,or whether any cortical changes correlate with clinical chara cteristics,is not completely clear.The current study recruited 43 patients with NMOSD who had normal-appearing brain tissue and 45 healthy controls matched for age,sex,and educational background from December 2020 to February 2022.A surface-based morphological analysis of high-resolution T1-weighted structural magnetic resonance images was used to calculate the cortical thickness,sulcal depth,and gyrification index.Analysis showed that cortical thickness in the bilate ral rostral middle frontal gyrus and left superior frontal gyrus was lower in the patients with NMOSD than in the control participants.Subgroup analysis of the patients with NMOSD indicated that compared with those who did not have any optic neuritis episodes,those who did have such episodes exhibited noticeably thinner cortex in the bilateral cuneus,superior parietal co rtex,and pericalcarine co rtex.Correlation analysis indicated that co rtical thickness in the bilateral rostral middle frontal gyrus was positively correlated with scores on the Digit Symbol Substitution Test and negatively correlated with scores on the Trail Making Test and the Expanded Disability Status Scale.These results are evidence that cortical thinning of the bilateral regional frontal cortex occurs in patients with NMOSD who have normal-appearing brain tissue,and that the degree of thinning is correlated with clinical disability and cognitive function.These findings will help im prove our understanding of the imaging chara cteristics in NMOSD and their potential clinical significance.
基金supported by the National Natural Science Foundation of China (21908132)。
文摘Phenol-containing wastewater is typical organic wastewater,and its treatment is arduous.An advanced method to treat this type of wastewater is persulfate activation.Environmentally friendly ceriummanganese composite oxide materials were synthesized by hydrothermal method and applied to the phenol degradation process.Various ratios of cerium and manganese,as well as the amount of sodium hydroxide,were investigated.The solid solutions of cerium and manganese were formed and confirmed by X-ray diffraction(XRD) and transmission electron microscopy(TEM).H_(2)-temperature programmed reduction(H_(2)-TPR) and X-ray photoelectron spectroscopy(XPS) were utilized to analyze the synergistic effect of cerium and manganese.It is found that there is a transformation between Ce^(4+)/Ce^(3+) and Mn^(2+)/Mn^(3+),which makes the material more trivalent manganese and thereby increases the catalytic activity.The effect of materials in catalyzing phenol degradation by peroxodisulfate(PDS) under various preparation conditions is discussed and high-effciency removal of phenol can be achieved and the removal rate at 180 min is close to 100%.The kinetic of this process was investigated and activation energy of phenol degradation is 62,35 kJ/mol.The degradation pathway of phenol was studied and it is found that PDS can be activated by low metal ions and the OH and SO_(4·)^(-)radicals play crucial roles according to the quenching experiments.