In this research, we study the relationship between mental workload and facial temperature of aircraft participants during a simulated takeoff flight. We conducted experiments to comprehend the correlation between wor...In this research, we study the relationship between mental workload and facial temperature of aircraft participants during a simulated takeoff flight. We conducted experiments to comprehend the correlation between work and facial temperature within the flight simulator. The experiment involved a group of 10 participants who played the role of pilots in a simulated A-320 flight. Six different flying scenarios were designed to simulate normal and emergency situations on airplane takeoff that would occur in different levels of mental workload for the participants. The measurements were workload assessment, face temperatures, and heart rate monitoring. Throughout the experiments, we collected a total of 120 instances of takeoffs, together with over 10 hours of time-series data including heart rate, workload, and face thermal images and temperatures. Comparative analysis of EEG data and thermal image types, revealed intriguing findings. The results indicate a notable inverse relationship between workload and facial muscle temperatures, as well as facial landmark points. The results of this study contribute to a deeper understanding of the physiological effects of workload, as well as practical implications for aviation safety and performance.展开更多
Mental fatigue is a complex state that results from prolonged cognitive activity. Symptoms of mental fatigue can include change in mood, motivation, and temporary deterioration of various cognitive functions involved ...Mental fatigue is a complex state that results from prolonged cognitive activity. Symptoms of mental fatigue can include change in mood, motivation, and temporary deterioration of various cognitive functions involved in goal-directed behavior. Extensive research has been done to develop methods for recognizing physiological and psychophysiological signs of mental fatigue. This has allowed the development of many AI-based models to classify different levels of fatigue, using data extracted from eye-tracking device, EEG, or ECG. In this paper, we present an experimental protocol which aims to both generate/measure mental fatigue and provide effective strategies for recuperation via VR sessions paired with EEG and eye tracking devices. This paper first provides a comprehensive state-of-the-art of mental fatigue predictive factors, measurement methods, and recuperation strategies. Then the paper presents an experimental protocol resulting from the state-of-the-art to 1) generate and measure mental fatigue and 2) evaluate the effectiveness of virtual therapy for fatigue recuperation, using a virtual reality (VR) simulated environment. In our work, we successfully generated mental fatigue through completion of cognitive tasks in a virtual simulated environment. Participants showed significant decline in pupil diameter and theta/alpha score during the various cognitive tasks. We trained an RBF SVM classifier from Electroencephalogram (EEG) data classifying mental fatigue with 95% accuracy on the test set. Finally, our results show that the time allocated for virtual therapy did not improve pupil diameter in post-relaxation period. Further research on the impact of relaxation therapy on relaxation therapy should allocate time closer to the standard recovery time of 60 min.展开更多
Monitoring students’ level of engagement during learning activities is an important challenge in the development of tutoring interventions. In this paper, we explore the feasibility of using electroencephalographic s...Monitoring students’ level of engagement during learning activities is an important challenge in the development of tutoring interventions. In this paper, we explore the feasibility of using electroencephalographic signals (EEG) as a tool to monitor the mental engagement index of novice medicine students during a reasoning process. More precisely, the objectives were first, to track students’ mental engagement evolution in order to investigate whether there were particular sections within the learning environment that aroused the highest engagement level among the students, and, if so, did these sections have an impact on learners’ performance. Experimental analyses showed the same trends in the different resolution phases as well as across the different regions of the environments. However, we noticed a higher engagement index during the treatment identification phase since it aroused more mental effort. Moreover statistically significant effects were found between mental engagement and students’ performance.展开更多
Alzheimer’s disease is the most common form of dementia, affecting nearly 9.9 million new people every year. The disease provokes important memory and cognitive impairment, eventually causing individuals to forget th...Alzheimer’s disease is the most common form of dementia, affecting nearly 9.9 million new people every year. The disease provokes important memory and cognitive impairment, eventually causing individuals to forget their loved ones and rendering them completely dependent on their caretakers. Alzheimer’s patients typically experience more negative emotions, such as frustration and apathy, than healthy older adults. There is currently no cure for the disease. Our research group explores how the integration of virtual reality (VR) and an EEG-based intelligent agent in music therapy can alleviate psychological and cognitive symptoms of the disease. We propose a theory explaining how, through activation of the brain reward system, music can reduce negative emotions, increase positive emotions and as a result increase performance on cognitive tasks. The results of our experimental study concord with our theory: emotional states of participants are improved, as per recorded through EEG, and performances on memory tasks show improvement following the intervention. We believe that the combination of EEG brain assessment, VR and music therapy is a promising method for emotional states and cognitive symptoms of Alzheimer’s disease.展开更多
In this research, we study the cognitive workload of aircraft pilots during a simulated takeoff procedure. We propose a proof-of-concept setup environment to gather heart rate, pupil dilation, and brain cognitive work...In this research, we study the cognitive workload of aircraft pilots during a simulated takeoff procedure. We propose a proof-of-concept setup environment to gather heart rate, pupil dilation, and brain cognitive workload data during an A320 takeoff within a simulator. Experiments were performed during which we collected 136 takeoffs across 13 pilots for more than 9 hours of time-series data. Moreover, this paper investigates the correlations between heart rate, pupil dilation, and cognitive workload during such exercise and found that a spike in cognitive load during a critical moment, such as an engine failure, augments a pilot’s heart rate and pupil dilation. Results show that a critical moment within a takeoff procedure increases a pilot’s cognitive load. Next, we used a stacked-LSTM model to predict cognitive workload 5 seconds into the future. The model was able to produce accurate predictions.展开更多
Alzheimer’s disease affects millions of persons every year. Negative emotions such as stress and frustration have a negative impact on memory function and Alzheimer's patients experience more negative emotions th...Alzheimer’s disease affects millions of persons every year. Negative emotions such as stress and frustration have a negative impact on memory function and Alzheimer's patients experience more negative emotions than healthy adults. Non-pharmacological treatment such as immersion in virtual environments could help Alzheimer patients by reducing their negative emotions, but it has restrictions and requirements. In this work, we present three virtual reality relaxing systems in which the patients are immersed in relaxing environments. We propose to use intelligent agents in order to adapt the relaxing environment to each participant and optimize its relaxation effect. The intelligent agents track the emotions of patients using electroencephalography as input in order to adapt</span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">the environments. We designed each system with different levels of intelligence in order to analyze the impact of the adaptation on the patients. Experiments were performed for each system on participants with subjective cognitive decline. Results show that these relaxing systems can reduce negative emotions and improve participants’ memory performance. The positive effects on affective state and memory persisted for a longer period of time and were generally more effective for the systems with more intelligence. We believe that the combination of </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">a </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">relaxing environment, virtual reality, intelligent agents for adapting</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">the environment, and brain assessment is a promising method for helping Alzheimer’s patients.展开更多
Gifted students have different ways of learning. They are characterized by a fitful level of attention and intuitive reasoning. In order to distinguish gifted students from normal students, we conducted an experiment ...Gifted students have different ways of learning. They are characterized by a fitful level of attention and intuitive reasoning. In order to distinguish gifted students from normal students, we conducted an experiment with 17 pupils, willing participants in this study. We collected different types of data (gender, age, performance, initial average in math and EEG mental states) in a web platform called NetMath intending for the learning of mathematics. We selected ten tasks divided into three difficulty levels (easy, medium and hard). Participants were invited to respond to top-level exercises on the four basic operations in decimals. Our first results confirmed that the student’s performance has no relation with age. A younger 9-year-old student achieved a higher score than the group with an average of 68.18%. This student can be considered as a gifted one. The gifted students can be also characterized by a mean value of attention (around 60%). They also can be defined by slightly weaker values of their mental states of attention and workload in comparison with the weak pupils.展开更多
Nowadays, millions of users use many social media systems every day. These services produce massive messages, which play a vital role in the social networking paradigm. As we see, an intelligent learning emotion syste...Nowadays, millions of users use many social media systems every day. These services produce massive messages, which play a vital role in the social networking paradigm. As we see, an intelligent learning emotion system is desperately needed for detecting emotion among these messages. This system could be suitable in understanding users’ feelings towards particular discussion. This paper proposes a text-based emotion recognition approach that uses personal text data to recognize user’s current emotion. The proposed approach applies Dominant Meaning Technique to recognize user’s emotion. The paper reports promising experiential results on the tested dataset based on the proposed algorithm.展开更多
文摘In this research, we study the relationship between mental workload and facial temperature of aircraft participants during a simulated takeoff flight. We conducted experiments to comprehend the correlation between work and facial temperature within the flight simulator. The experiment involved a group of 10 participants who played the role of pilots in a simulated A-320 flight. Six different flying scenarios were designed to simulate normal and emergency situations on airplane takeoff that would occur in different levels of mental workload for the participants. The measurements were workload assessment, face temperatures, and heart rate monitoring. Throughout the experiments, we collected a total of 120 instances of takeoffs, together with over 10 hours of time-series data including heart rate, workload, and face thermal images and temperatures. Comparative analysis of EEG data and thermal image types, revealed intriguing findings. The results indicate a notable inverse relationship between workload and facial muscle temperatures, as well as facial landmark points. The results of this study contribute to a deeper understanding of the physiological effects of workload, as well as practical implications for aviation safety and performance.
文摘Mental fatigue is a complex state that results from prolonged cognitive activity. Symptoms of mental fatigue can include change in mood, motivation, and temporary deterioration of various cognitive functions involved in goal-directed behavior. Extensive research has been done to develop methods for recognizing physiological and psychophysiological signs of mental fatigue. This has allowed the development of many AI-based models to classify different levels of fatigue, using data extracted from eye-tracking device, EEG, or ECG. In this paper, we present an experimental protocol which aims to both generate/measure mental fatigue and provide effective strategies for recuperation via VR sessions paired with EEG and eye tracking devices. This paper first provides a comprehensive state-of-the-art of mental fatigue predictive factors, measurement methods, and recuperation strategies. Then the paper presents an experimental protocol resulting from the state-of-the-art to 1) generate and measure mental fatigue and 2) evaluate the effectiveness of virtual therapy for fatigue recuperation, using a virtual reality (VR) simulated environment. In our work, we successfully generated mental fatigue through completion of cognitive tasks in a virtual simulated environment. Participants showed significant decline in pupil diameter and theta/alpha score during the various cognitive tasks. We trained an RBF SVM classifier from Electroencephalogram (EEG) data classifying mental fatigue with 95% accuracy on the test set. Finally, our results show that the time allocated for virtual therapy did not improve pupil diameter in post-relaxation period. Further research on the impact of relaxation therapy on relaxation therapy should allocate time closer to the standard recovery time of 60 min.
文摘Monitoring students’ level of engagement during learning activities is an important challenge in the development of tutoring interventions. In this paper, we explore the feasibility of using electroencephalographic signals (EEG) as a tool to monitor the mental engagement index of novice medicine students during a reasoning process. More precisely, the objectives were first, to track students’ mental engagement evolution in order to investigate whether there were particular sections within the learning environment that aroused the highest engagement level among the students, and, if so, did these sections have an impact on learners’ performance. Experimental analyses showed the same trends in the different resolution phases as well as across the different regions of the environments. However, we noticed a higher engagement index during the treatment identification phase since it aroused more mental effort. Moreover statistically significant effects were found between mental engagement and students’ performance.
文摘Alzheimer’s disease is the most common form of dementia, affecting nearly 9.9 million new people every year. The disease provokes important memory and cognitive impairment, eventually causing individuals to forget their loved ones and rendering them completely dependent on their caretakers. Alzheimer’s patients typically experience more negative emotions, such as frustration and apathy, than healthy older adults. There is currently no cure for the disease. Our research group explores how the integration of virtual reality (VR) and an EEG-based intelligent agent in music therapy can alleviate psychological and cognitive symptoms of the disease. We propose a theory explaining how, through activation of the brain reward system, music can reduce negative emotions, increase positive emotions and as a result increase performance on cognitive tasks. The results of our experimental study concord with our theory: emotional states of participants are improved, as per recorded through EEG, and performances on memory tasks show improvement following the intervention. We believe that the combination of EEG brain assessment, VR and music therapy is a promising method for emotional states and cognitive symptoms of Alzheimer’s disease.
文摘In this research, we study the cognitive workload of aircraft pilots during a simulated takeoff procedure. We propose a proof-of-concept setup environment to gather heart rate, pupil dilation, and brain cognitive workload data during an A320 takeoff within a simulator. Experiments were performed during which we collected 136 takeoffs across 13 pilots for more than 9 hours of time-series data. Moreover, this paper investigates the correlations between heart rate, pupil dilation, and cognitive workload during such exercise and found that a spike in cognitive load during a critical moment, such as an engine failure, augments a pilot’s heart rate and pupil dilation. Results show that a critical moment within a takeoff procedure increases a pilot’s cognitive load. Next, we used a stacked-LSTM model to predict cognitive workload 5 seconds into the future. The model was able to produce accurate predictions.
文摘Alzheimer’s disease affects millions of persons every year. Negative emotions such as stress and frustration have a negative impact on memory function and Alzheimer's patients experience more negative emotions than healthy adults. Non-pharmacological treatment such as immersion in virtual environments could help Alzheimer patients by reducing their negative emotions, but it has restrictions and requirements. In this work, we present three virtual reality relaxing systems in which the patients are immersed in relaxing environments. We propose to use intelligent agents in order to adapt the relaxing environment to each participant and optimize its relaxation effect. The intelligent agents track the emotions of patients using electroencephalography as input in order to adapt</span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">the environments. We designed each system with different levels of intelligence in order to analyze the impact of the adaptation on the patients. Experiments were performed for each system on participants with subjective cognitive decline. Results show that these relaxing systems can reduce negative emotions and improve participants’ memory performance. The positive effects on affective state and memory persisted for a longer period of time and were generally more effective for the systems with more intelligence. We believe that the combination of </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">a </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">relaxing environment, virtual reality, intelligent agents for adapting</span></span></span><span><span><span style="font-family:""> </span></span></span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">the environment, and brain assessment is a promising method for helping Alzheimer’s patients.
文摘Gifted students have different ways of learning. They are characterized by a fitful level of attention and intuitive reasoning. In order to distinguish gifted students from normal students, we conducted an experiment with 17 pupils, willing participants in this study. We collected different types of data (gender, age, performance, initial average in math and EEG mental states) in a web platform called NetMath intending for the learning of mathematics. We selected ten tasks divided into three difficulty levels (easy, medium and hard). Participants were invited to respond to top-level exercises on the four basic operations in decimals. Our first results confirmed that the student’s performance has no relation with age. A younger 9-year-old student achieved a higher score than the group with an average of 68.18%. This student can be considered as a gifted one. The gifted students can be also characterized by a mean value of attention (around 60%). They also can be defined by slightly weaker values of their mental states of attention and workload in comparison with the weak pupils.
文摘Nowadays, millions of users use many social media systems every day. These services produce massive messages, which play a vital role in the social networking paradigm. As we see, an intelligent learning emotion system is desperately needed for detecting emotion among these messages. This system could be suitable in understanding users’ feelings towards particular discussion. This paper proposes a text-based emotion recognition approach that uses personal text data to recognize user’s current emotion. The proposed approach applies Dominant Meaning Technique to recognize user’s emotion. The paper reports promising experiential results on the tested dataset based on the proposed algorithm.