Magnesium(Mg)alloys,as the lightest metal structural material with good damping capacities,have im-portant application prospects in realizing structural lightweight and vibration reduction.However,their engineering ap...Magnesium(Mg)alloys,as the lightest metal structural material with good damping capacities,have im-portant application prospects in realizing structural lightweight and vibration reduction.However,their engineering application is greatly limited by poor plastic formability.Wire and arc additive manufactur-ing(WAAM)provides a potential approach for fabricating large-scale Mg alloy components with high manufacturing flexibility.In this study,the evolution of the solidification microstructure of a WAAM-processed Mg-Al-based alloy was quantitatively analyzed based on the analytical models;then,the cor-relations between the solidification microstructure and mechanical properties/damping capacities were investigated.The results revealed that the WAAM-processed Mg-Al-based alloy with an equiaxed-grain-dominated microstructure displayed a simultaneous enhancement in mechanical properties and damping capacities compared to those of the cast Mg-Al-based alloy.The good combination of mechanical prop-erties and damping capacities are mainly attributed to the weakened basal texture with a relatively high Schmid factor for basalslip,the twinning-induced plasticity(TWIP)effect associated with the profuse{10-12}tensile twinning,and the relatively high dislocation density caused by the thermal stress during the WAAM process.展开更多
Dear Editor,Insect saliva is formed and secreted by the salivary gland,which is vital for various physiological processes,such as feeding and for viral transmission.More recently,omic approaches,such as transcriptomic...Dear Editor,Insect saliva is formed and secreted by the salivary gland,which is vital for various physiological processes,such as feeding and for viral transmission.More recently,omic approaches,such as transcriptomics,are revealing valued insights into salivary functions during blood feeding(Klouwens et al.,2023).展开更多
基金supported by the National Key Research and Development Program of China (No.2021YFB3701100)the National Natural Science Foundation of China (Nos.U20A20234,51874062)+1 种基金the Postdoctoral Science Foundation of China (No.2022M710503)the Chongqing Foundation and Advanced Research Project (No.cstc2019jcyj-zdxmX0010).
文摘Magnesium(Mg)alloys,as the lightest metal structural material with good damping capacities,have im-portant application prospects in realizing structural lightweight and vibration reduction.However,their engineering application is greatly limited by poor plastic formability.Wire and arc additive manufactur-ing(WAAM)provides a potential approach for fabricating large-scale Mg alloy components with high manufacturing flexibility.In this study,the evolution of the solidification microstructure of a WAAM-processed Mg-Al-based alloy was quantitatively analyzed based on the analytical models;then,the cor-relations between the solidification microstructure and mechanical properties/damping capacities were investigated.The results revealed that the WAAM-processed Mg-Al-based alloy with an equiaxed-grain-dominated microstructure displayed a simultaneous enhancement in mechanical properties and damping capacities compared to those of the cast Mg-Al-based alloy.The good combination of mechanical prop-erties and damping capacities are mainly attributed to the weakened basal texture with a relatively high Schmid factor for basalslip,the twinning-induced plasticity(TWIP)effect associated with the profuse{10-12}tensile twinning,and the relatively high dislocation density caused by the thermal stress during the WAAM process.
基金supported by the Key Program of National Natural Science Foundation of China(31830074)the“Pioneer”and“Leading Goose”R&D Program of Zhejiang(No.2023C02030)the Program for Chinese Innovation Team in Key Areas of Science and Technology of the Ministry of Science and Technology of the People's Republic of China(2016RA4008)。
文摘Dear Editor,Insect saliva is formed and secreted by the salivary gland,which is vital for various physiological processes,such as feeding and for viral transmission.More recently,omic approaches,such as transcriptomics,are revealing valued insights into salivary functions during blood feeding(Klouwens et al.,2023).