Rapid advancements in flexible electronics technology propel soft tactile sensing devices toward high-level biointegration,even attaining tactile perception capabilities surpassing human skin.However,the inherent mech...Rapid advancements in flexible electronics technology propel soft tactile sensing devices toward high-level biointegration,even attaining tactile perception capabilities surpassing human skin.However,the inherent mechanical mismatch resulting from deficient biomimetic mechanical properties of sensing materials poses a challenge to the application of wearable tactile sensing devices in human-machine interaction.Inspired by the innate biphasic structure of human subcutaneous tissue,this study discloses a skin-compliant wearable iontronic triboelectric gel via phase separation induced by competitive hydrogen bonding.Solvent-nonsolvent interactions are used to construct competitive hydrogen bonding systems to trigger phase separation,and the resulting soft-hard alternating phase-locked structure confers the iontronic triboelectric gel with Young’s modulus(6.8-281.9 kPa)and high tensile properties(880%)compatible with human skin.The abundance of reactive hydroxyl groups gives the gel excellent tribopositive and self-adhesive properties(peel strength>70 N m^(−1)).The self-powered tactile sensing skin based on this gel maintains favorable interface and mechanical stability with the working object,which greatly ensures the high fidelity and reliability of soft tactile sensing signals.This strategy,enabling skin-compliant design and broad dynamic tunability of the mechanical properties of sensing materials,presents a universal platform for broad applications from soft robots to wearable electronics.展开更多
Lily(Lilium spp.) is an important ornamental flower, which is mainly propagated by bulbs. Cell wall invertases(CWINs), which catalyze the irreversibly conversion of sucrose into glucose and fructose in the extracellul...Lily(Lilium spp.) is an important ornamental flower, which is mainly propagated by bulbs. Cell wall invertases(CWINs), which catalyze the irreversibly conversion of sucrose into glucose and fructose in the extracellular space, are key enzymes participating in sucrose allocation in higher plants. Previous studies have shown that CWINs play an essential role in bulblet initiation process in bulbous crops, but the underlying molecular mechanism remains unclear. Here, a CWIN gene of Lilium brownii var. giganteum(Lbg) was identified and amplified from genomic DNA. Quantitative RT-PCR assays revealed that the expression level of LbgCWIN1 was highly upregulated exactly when the endogenous starch degraded in non-sucrose medium during in vitro bulblet initiation in Lbg. Phylogenetic relationship, motif, and domain analysis of LbgCWIN1 protein and CWINs in other plant species showed that all sequences of these CWIN proteins were highly conserved. The promoter sequence of LbgCWIN1 possessed a number of alpha-amylase-, phytohormone-, light-and stress-responsive cis-elements. Meanwhile, β-glucuronidase(GUS) assay showed that the 459 bp upstream fragment from the translational start site displayed maximal promoter activity. These results revealed that LbgCWIN1 might function in the process of in vitro bulblet initiation and be in the response to degradation of endogenous starch.展开更多
Oxygen deficiency has crucial effects on the crystal structure and electrochemical performance of spinel oxide lithium electrode materials such as LiNi_(0.5)Mn_(1.5)O_(4)(LNMO)cathode.In particular,the oxygen stoichio...Oxygen deficiency has crucial effects on the crystal structure and electrochemical performance of spinel oxide lithium electrode materials such as LiNi_(0.5)Mn_(1.5)O_(4)(LNMO)cathode.In particular,the oxygen stoichiometry on the crystal surface differs from that on the crystal interior in LNMO.The detection of local oxygen loss in LNMO and its correlation with the crystal structure and the cycling stability of LNMO remain challenging.In this study,the effect of oxygen deficiency in LNMO controlled by sintering temperature on the surface crystal structure and electrochemical performance of LNMO is comprehensively investigated.The high concentration of oxygen vacancies segregates at the surface regions of LNMO forming a thin rock‐salt and/or deficient spinel surface layer.The atomic‐level surface structure reconstruction was demonstrated by annular dark‐field and annular brightfield techniques.For the synthesis of LNMO,the higher sintering temperature results in higher crystallinity but the higher oxygen deficiency in LNMO.The high crystallinity of LNMO would increase the thermal stability of LNMO cathodes while the high content of oxygen deficiency would decrease the surface structural stability of LNMO.Therefore,the LNMO sintered at a medium temperature of 850°C achieved the best capacity retention.The results suggest a competitive function mechanism between oxygen stoichiometry and the crystallinity of LNMO on the cycling performance of LNMO.展开更多
A series of tests of a full-scale river icebreaker was conducted to investigate the characteristics of ice-induced hull vibration.The test was conducted when the river icebreaker was operating in an ice-covered river ...A series of tests of a full-scale river icebreaker was conducted to investigate the characteristics of ice-induced hull vibration.The test was conducted when the river icebreaker was operating in an ice-covered river at temperatures of-4 to 0°C with ice thicknesses of 300 to 400 mm.In the tests,the ice condition and icebreaker speed were chosen as the main influence factors.By analyzing the measured test data,we identified some important points regarding ice-induced hull vibration.When the river icebreaker navigates in an area with complete ice coverage,the peak value of the acceleration amplitude spectrum is highest.Also,the vibration response excited by the icebreaking load in an area with complete ice coverage exhibits more frequencies.With an increase in icebreaker speed,the vibration acceleration response gradually increases.However,habitability of the bow region on the main and driving decks is maintained due to the harmless vibration levels.In addition,the icebreaking operation of the river icebreaker causes violent local vibration of the grillage on the main deck.展开更多
Perovskite-type lithium lanthanum titanates(LLTO)display a high bulk ionic conductivity and are considered a promising electrolyte for building up to advanced solid-state Li-ion batteries.The LLTO crystals contain a h...Perovskite-type lithium lanthanum titanates(LLTO)display a high bulk ionic conductivity and are considered a promising electrolyte for building up to advanced solid-state Li-ion batteries.The LLTO crystals contain a high concentration of intrinsically formed 90ο-rotated domain boundaries(DBs)serving as barriers to bulk Li-ion conduction.However,the mechanism of how the DB concentration and DB resistance can compete with each other to determine the bulk conductivity of LLTO is still unknown.Here we report a comprehensive study of LLTO compounds,aimed to unravel the mechanism and hence explore new path(s)for further improving the conductivity of this material.Our results show that both the sintering temperature and chemical composition can affect significantly the domain structures in LLTO.It is found that a decrease in the DB concentration is always accompanied by increased DB resistance due to the increased lattice mismatch at DBs,and vice versa.By unifying the electrochemical impedance spectroscopy and transmission electron microscopy analysis,it is clearly shown that the high DB resistance,instead of DB concentration,acts as the dominant factor governing the bulk conductivity of LLTO.The results thus renew the conventional understanding of the bulk Li-ion conduction in LLTO and shed light on developing novel LLTO electrolyte materials with improved ionic conductivity.展开更多
[Objectives] To explore the effects of Danqu capsules(the prescription of Lei Zhongyi, the master of traditional Chinese medicine for the syndrome of intermingling of phlegm and static blood of coronary heart disease)...[Objectives] To explore the effects of Danqu capsules(the prescription of Lei Zhongyi, the master of traditional Chinese medicine for the syndrome of intermingling of phlegm and static blood of coronary heart disease) on arterial blood pressure, heart rate and myocardial tension time index in rats. [Methods] A total of 50 SD rats, weighing(300±20) g, were randomly and evenly divided into Danqu capsule observation groups(low, middle and high-dose groups) and control groups(saline group and captopril group). Under anesthesia, the rats in each group were administered with 0.6, 1.2 and 2.4 g/kg of Danqu capsule suspension, 1 mL/100 g of saline and 10 mg/kg of captopril, respectively through duodena, and their systolic blood pressure, diastolic blood pressure, mean arterial pressure, pulse pressure difference and heart rate were measured and recorded by RM6240 multi-channel physiological signal acquisition and processing system before administration, 10, 20, 30, 40, 50, 60, 90 and 120 min after the administration, respectively, and the myocardial tension time index was calculated. [Results] Compared with the saline group, the systolic, diastolic and mean pressure reduced 10, 20, 30, 40, 50, 60, 90 and 120 min after the administration, and the pulse pressure difference did not change significantly in the Danqu capsule groups(low, middle and high-dose groups), and the heart rate slowed down and the myocardial tension time index reduced in the high-dose Danqu capsule group. Compared with the captopril group, the Danqu capsule groups showed similar blood pressure-reducing effect. [Conclusions]Danqu capsules have obvious effect of lowering blood pressure and myocardial tension time index. High-dose Danqu capsules has the effect of slowing down the heart rate. The blood pressure-lowering effect of Danqu capsules shows a dose-dependent manner. Clinically, they can be used in patients with coronary heart diseases and hypertension, suggesting that they should be used with caution in patients with hypotension.展开更多
Threatening millions of people and causing billions of dollars in losses,tropical cyclones(TCs)are among the most severe natural hazards in the world,especially over the western North Pacific.However,the response of T...Threatening millions of people and causing billions of dollars in losses,tropical cyclones(TCs)are among the most severe natural hazards in the world,especially over the western North Pacific.However,the response of TCs to a warming or changing climate has been the subject of considerable research,often with conflicting results.In this study,the abilities of Coupled Model Intercomparison Project(CMIP)Phase 6(CMIP6)models to simulate TC genesis are assessed through historical simulations.The results indicate that a systematic humidity bias persists in most CMIP6 models from corresponding CMIP Phase 5 models,which leads to an overestimation of climatological TC genesis.However,the annual cycle of TC genesis is well captured by CMIP6 models.The abilities of 25 models to simulate the geographical patterns of TC genesis vary significantly.In addition,seven models are identified as well simulated models,but seven models are identified as poorly simulated ones.A comparison of the environmental variables for TC genesis in the well-simulated group and the poorly simulated group identifies moisture in the mid-troposphere as a key factor in the realistic simulation of El Niño-Southern Oscillation(ENSO)impacts on TC genesis.In contrast with the observations,the poorly simulated group does not reproduce the suppressing effect of negative moisture anomalies on TC genesis in the northwestern region(20°–30°N,120°–145°E)during El Niño years.Given the interaction between TC and ENSO,these results provide a guidance for future TC projections under climate change by CMIP6 models.展开更多
The margin of credit business in commercial bank has the problems if legal nature identification and juridical practice has identical comprehension on margin, and that the non-standard financial source and operations ...The margin of credit business in commercial bank has the problems if legal nature identification and juridical practice has identical comprehension on margin, and that the non-standard financial source and operations of margin makes legal risks. Therefore, the prevention and control measures should be taken for the open and accounting of margin account, drawdown of margin, maintenance of account information, and freezing and deduction of margin of competent organs.展开更多
The increasing shortage of fossil resources and environmental pollution has renewed interest in the synthesis of value-added biochemicals from methanol.However,most of native or synthetic methylotrophs are unable to a...The increasing shortage of fossil resources and environmental pollution has renewed interest in the synthesis of value-added biochemicals from methanol.However,most of native or synthetic methylotrophs are unable to assimilate methanol at a sufficient rate to produce biochemicals.Thus,the performance of methylotrophs still needs to be optimized to meet the demands of industrial applications.In this review,we provide an in-depth discussion on the properties of natural and synthetic methylotrophs,and summarize the natural and synthetic methanol assimilation pathways.Further,we discuss metabolic engineering strategies for enabling microbial utilization of methanol for the bioproduction of value-added chemicals.Finally,we highlight the potential of microbial engineering for methanol assimilation and offer guidance for achieving a low-carbon footprint for the biosynthesis of chemicals.展开更多
As an important industrial enzyme,protease is widely used in feed,food and other fields.At present,the insufficient protease activity obtained from microorganisms cannot meet the purpose of industrial production.In th...As an important industrial enzyme,protease is widely used in feed,food and other fields.At present,the insufficient protease activity obtained from microorganisms cannot meet the purpose of industrial production.In this study,Bacillus amyloliquefaciens with high protease production was screened from animal feces by plate transparent circle method.To improve the production of protease,atmospheric room temperature plasma(ARTP)mutagenesis was used in the first round,protease activity reached 315.0 U/mL.Then,to enhance production of protease,^(60)Co-γ irradiation was used for combined mutagenesis,leading to protease activity of B.amyloliquefaciens FMME ZK003 up to 355.0 U/mL.Furthermore,to realize the efficient production of protease,after optimization of fermentation conditions,protease activity was increased to 456.9 U/mL.Finally,protease activity of B.amyloliquefaciens FMME ZK003 reached 823.0 U/mL in a 5 L fermenter.These results indicate that B.amyloliquefaciens can efficiently produce protease,which provides a good foundation for the industrial production of protease.展开更多
The use of abundant and cheap one carbon(C1)feedstocks to produce value-added chemicals is an important approach for achieving carbon neutrality and tackling environmental problems.The conversion of C1 feedstocks to h...The use of abundant and cheap one carbon(C1)feedstocks to produce value-added chemicals is an important approach for achieving carbon neutrality and tackling environmental problems.The conversion of C1 feedstocks to high-value chemicals is dependent on efficient C1 assimilation pathways and microbial chassis adapted for efficient incorporation.Here,we opted to summarize the natural and synthetic C1 assimilation pathways and their key factors for metabolizing C1 feedstock.Accordingly,we discussed the metabolic engineering strategies for enabling the microbial utilization of C1 feedstocks for the bioproduction of value-added chemicals.In addition,we highlighted future perspectives of C1-based biomanufacturing for achieving a low-carbon footprint for the biosynthesis of chemicals.展开更多
Microbial biorefineries to produce chemicals from renewable feedstock provides attractive advantages,including mild reaction conditions and sustainable manufacturing.However,low-efficiency biorefineries always result ...Microbial biorefineries to produce chemicals from renewable feedstock provides attractive advantages,including mild reaction conditions and sustainable manufacturing.However,low-efficiency biorefineries always result in an uncompetitive biological process compared to the current petrochemical process.Thus,improving microbial capacity to maximize product yield,productivity,and titer has been recognized as a central goal for bioengineers and biochemists.The knowledge of cellular biochemistry has enabled the regulation of microbial physiology to couple with chemical production.The rapid development in metabolic engineering provides diverse strategies to enhance the efficiency of chemical biosynthesis pathways.New synthetic biology tools as well as novel regulatory targets also offer the opportunity to improve biorefinery environmental adaptivity.In this review,the recent advances in building efficient biorefineries were showcased.In addition,the challenges and future perspectives of microbial host engineering for increased microbial capacity of a biorefinery were discussed.展开更多
基金supported by the National Natural Science Foundation of China(22278091)the Guangxi Natural Science Foundation of China(2023GXNSFFA026009)+1 种基金All the experiments with human research participants were approved by the Medical Ethics Committee of Guangxi University(GXU-2023-023)informed written consent was obtained from all participants.
文摘Rapid advancements in flexible electronics technology propel soft tactile sensing devices toward high-level biointegration,even attaining tactile perception capabilities surpassing human skin.However,the inherent mechanical mismatch resulting from deficient biomimetic mechanical properties of sensing materials poses a challenge to the application of wearable tactile sensing devices in human-machine interaction.Inspired by the innate biphasic structure of human subcutaneous tissue,this study discloses a skin-compliant wearable iontronic triboelectric gel via phase separation induced by competitive hydrogen bonding.Solvent-nonsolvent interactions are used to construct competitive hydrogen bonding systems to trigger phase separation,and the resulting soft-hard alternating phase-locked structure confers the iontronic triboelectric gel with Young’s modulus(6.8-281.9 kPa)and high tensile properties(880%)compatible with human skin.The abundance of reactive hydroxyl groups gives the gel excellent tribopositive and self-adhesive properties(peel strength>70 N m^(−1)).The self-powered tactile sensing skin based on this gel maintains favorable interface and mechanical stability with the working object,which greatly ensures the high fidelity and reliability of soft tactile sensing signals.This strategy,enabling skin-compliant design and broad dynamic tunability of the mechanical properties of sensing materials,presents a universal platform for broad applications from soft robots to wearable electronics.
基金financially supported by the National Natural Science Foundation of China (Grant Nos.32101571,32002071)the Zhejiang Science and Technology Major Program on Agricultural New Variety Breeding (Grant No.2021C02071-6)。
文摘Lily(Lilium spp.) is an important ornamental flower, which is mainly propagated by bulbs. Cell wall invertases(CWINs), which catalyze the irreversibly conversion of sucrose into glucose and fructose in the extracellular space, are key enzymes participating in sucrose allocation in higher plants. Previous studies have shown that CWINs play an essential role in bulblet initiation process in bulbous crops, but the underlying molecular mechanism remains unclear. Here, a CWIN gene of Lilium brownii var. giganteum(Lbg) was identified and amplified from genomic DNA. Quantitative RT-PCR assays revealed that the expression level of LbgCWIN1 was highly upregulated exactly when the endogenous starch degraded in non-sucrose medium during in vitro bulblet initiation in Lbg. Phylogenetic relationship, motif, and domain analysis of LbgCWIN1 protein and CWINs in other plant species showed that all sequences of these CWIN proteins were highly conserved. The promoter sequence of LbgCWIN1 possessed a number of alpha-amylase-, phytohormone-, light-and stress-responsive cis-elements. Meanwhile, β-glucuronidase(GUS) assay showed that the 459 bp upstream fragment from the translational start site displayed maximal promoter activity. These results revealed that LbgCWIN1 might function in the process of in vitro bulblet initiation and be in the response to degradation of endogenous starch.
基金National Natural Science Foundation of China,Grant/Award Numbers:22075003,22090043,U1930401,U2030206。
文摘Oxygen deficiency has crucial effects on the crystal structure and electrochemical performance of spinel oxide lithium electrode materials such as LiNi_(0.5)Mn_(1.5)O_(4)(LNMO)cathode.In particular,the oxygen stoichiometry on the crystal surface differs from that on the crystal interior in LNMO.The detection of local oxygen loss in LNMO and its correlation with the crystal structure and the cycling stability of LNMO remain challenging.In this study,the effect of oxygen deficiency in LNMO controlled by sintering temperature on the surface crystal structure and electrochemical performance of LNMO is comprehensively investigated.The high concentration of oxygen vacancies segregates at the surface regions of LNMO forming a thin rock‐salt and/or deficient spinel surface layer.The atomic‐level surface structure reconstruction was demonstrated by annular dark‐field and annular brightfield techniques.For the synthesis of LNMO,the higher sintering temperature results in higher crystallinity but the higher oxygen deficiency in LNMO.The high crystallinity of LNMO would increase the thermal stability of LNMO cathodes while the high content of oxygen deficiency would decrease the surface structural stability of LNMO.Therefore,the LNMO sintered at a medium temperature of 850°C achieved the best capacity retention.The results suggest a competitive function mechanism between oxygen stoichiometry and the crystallinity of LNMO on the cycling performance of LNMO.
基金This study was funded by the National keyResearch and Development program (2016YFC0303406)FundamentalResearch Funds for the Central University (HEUCFD1515,HEUCFM170113)+2 种基金High Technology Ship Funds of Ministry ofIndustry and Information of China, Assembly Advanced Research Fundof China (No. 6140210020105)China Postdoctoral Science Foundation(No. 2014M552661)Major innovation projects of High TechnologyShip Funds of Ministry of Industry and Information of China, Navalpre-research project, National Natural Science Foundation of China(Nos. 51209052 and 51 709 063).
文摘A series of tests of a full-scale river icebreaker was conducted to investigate the characteristics of ice-induced hull vibration.The test was conducted when the river icebreaker was operating in an ice-covered river at temperatures of-4 to 0°C with ice thicknesses of 300 to 400 mm.In the tests,the ice condition and icebreaker speed were chosen as the main influence factors.By analyzing the measured test data,we identified some important points regarding ice-induced hull vibration.When the river icebreaker navigates in an area with complete ice coverage,the peak value of the acceleration amplitude spectrum is highest.Also,the vibration response excited by the icebreaking load in an area with complete ice coverage exhibits more frequencies.With an increase in icebreaker speed,the vibration acceleration response gradually increases.However,habitability of the bow region on the main and driving decks is maintained due to the harmless vibration levels.In addition,the icebreaking operation of the river icebreaker causes violent local vibration of the grillage on the main deck.
基金supported by the National Natural Science Foundation of China(22075003,U2030206)。
文摘Perovskite-type lithium lanthanum titanates(LLTO)display a high bulk ionic conductivity and are considered a promising electrolyte for building up to advanced solid-state Li-ion batteries.The LLTO crystals contain a high concentration of intrinsically formed 90ο-rotated domain boundaries(DBs)serving as barriers to bulk Li-ion conduction.However,the mechanism of how the DB concentration and DB resistance can compete with each other to determine the bulk conductivity of LLTO is still unknown.Here we report a comprehensive study of LLTO compounds,aimed to unravel the mechanism and hence explore new path(s)for further improving the conductivity of this material.Our results show that both the sintering temperature and chemical composition can affect significantly the domain structures in LLTO.It is found that a decrease in the DB concentration is always accompanied by increased DB resistance due to the increased lattice mismatch at DBs,and vice versa.By unifying the electrochemical impedance spectroscopy and transmission electron microscopy analysis,it is clearly shown that the high DB resistance,instead of DB concentration,acts as the dominant factor governing the bulk conductivity of LLTO.The results thus renew the conventional understanding of the bulk Li-ion conduction in LLTO and shed light on developing novel LLTO electrolyte materials with improved ionic conductivity.
基金Supported by Science and Technology Coordination Innovation Project in Shaanxi Province(2016TZC-S-14-3)
文摘[Objectives] To explore the effects of Danqu capsules(the prescription of Lei Zhongyi, the master of traditional Chinese medicine for the syndrome of intermingling of phlegm and static blood of coronary heart disease) on arterial blood pressure, heart rate and myocardial tension time index in rats. [Methods] A total of 50 SD rats, weighing(300±20) g, were randomly and evenly divided into Danqu capsule observation groups(low, middle and high-dose groups) and control groups(saline group and captopril group). Under anesthesia, the rats in each group were administered with 0.6, 1.2 and 2.4 g/kg of Danqu capsule suspension, 1 mL/100 g of saline and 10 mg/kg of captopril, respectively through duodena, and their systolic blood pressure, diastolic blood pressure, mean arterial pressure, pulse pressure difference and heart rate were measured and recorded by RM6240 multi-channel physiological signal acquisition and processing system before administration, 10, 20, 30, 40, 50, 60, 90 and 120 min after the administration, respectively, and the myocardial tension time index was calculated. [Results] Compared with the saline group, the systolic, diastolic and mean pressure reduced 10, 20, 30, 40, 50, 60, 90 and 120 min after the administration, and the pulse pressure difference did not change significantly in the Danqu capsule groups(low, middle and high-dose groups), and the heart rate slowed down and the myocardial tension time index reduced in the high-dose Danqu capsule group. Compared with the captopril group, the Danqu capsule groups showed similar blood pressure-reducing effect. [Conclusions]Danqu capsules have obvious effect of lowering blood pressure and myocardial tension time index. High-dose Danqu capsules has the effect of slowing down the heart rate. The blood pressure-lowering effect of Danqu capsules shows a dose-dependent manner. Clinically, they can be used in patients with coronary heart diseases and hypertension, suggesting that they should be used with caution in patients with hypotension.
基金The National Natural Science Foundation of China under contract Nos 42076001,41690121,and 41690120the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)under contract No.311020004the Oceanic Interdisciplinary Program of Shanghai Jiao Tong University under contract No.SL2020PT205.
文摘Threatening millions of people and causing billions of dollars in losses,tropical cyclones(TCs)are among the most severe natural hazards in the world,especially over the western North Pacific.However,the response of TCs to a warming or changing climate has been the subject of considerable research,often with conflicting results.In this study,the abilities of Coupled Model Intercomparison Project(CMIP)Phase 6(CMIP6)models to simulate TC genesis are assessed through historical simulations.The results indicate that a systematic humidity bias persists in most CMIP6 models from corresponding CMIP Phase 5 models,which leads to an overestimation of climatological TC genesis.However,the annual cycle of TC genesis is well captured by CMIP6 models.The abilities of 25 models to simulate the geographical patterns of TC genesis vary significantly.In addition,seven models are identified as well simulated models,but seven models are identified as poorly simulated ones.A comparison of the environmental variables for TC genesis in the well-simulated group and the poorly simulated group identifies moisture in the mid-troposphere as a key factor in the realistic simulation of El Niño-Southern Oscillation(ENSO)impacts on TC genesis.In contrast with the observations,the poorly simulated group does not reproduce the suppressing effect of negative moisture anomalies on TC genesis in the northwestern region(20°–30°N,120°–145°E)during El Niño years.Given the interaction between TC and ENSO,these results provide a guidance for future TC projections under climate change by CMIP6 models.
文摘The margin of credit business in commercial bank has the problems if legal nature identification and juridical practice has identical comprehension on margin, and that the non-standard financial source and operations of margin makes legal risks. Therefore, the prevention and control measures should be taken for the open and accounting of margin account, drawdown of margin, maintenance of account information, and freezing and deduction of margin of competent organs.
基金supported by the National Natural Science Founda-tion of China(22122806 and 22038005)the Major Project of Natu-ral Science Foundation of Jiangsu Province(BK20212013)+1 种基金the Provin-cial Outstanding Youth Foundation of Jiangsu Province(BK20211529)the Fundamental Research Funds for the Central Universities(JUSRP22031).
文摘The increasing shortage of fossil resources and environmental pollution has renewed interest in the synthesis of value-added biochemicals from methanol.However,most of native or synthetic methylotrophs are unable to assimilate methanol at a sufficient rate to produce biochemicals.Thus,the performance of methylotrophs still needs to be optimized to meet the demands of industrial applications.In this review,we provide an in-depth discussion on the properties of natural and synthetic methylotrophs,and summarize the natural and synthetic methanol assimilation pathways.Further,we discuss metabolic engineering strategies for enabling microbial utilization of methanol for the bioproduction of value-added chemicals.Finally,we highlight the potential of microbial engineering for methanol assimilation and offer guidance for achieving a low-carbon footprint for the biosynthesis of chemicals.
基金the Provincal Outstanding Youth Foundation of Jiangsu Province(BK20211529)the National Science Fund for Excellent Young Scholars(22122806).
文摘As an important industrial enzyme,protease is widely used in feed,food and other fields.At present,the insufficient protease activity obtained from microorganisms cannot meet the purpose of industrial production.In this study,Bacillus amyloliquefaciens with high protease production was screened from animal feces by plate transparent circle method.To improve the production of protease,atmospheric room temperature plasma(ARTP)mutagenesis was used in the first round,protease activity reached 315.0 U/mL.Then,to enhance production of protease,^(60)Co-γ irradiation was used for combined mutagenesis,leading to protease activity of B.amyloliquefaciens FMME ZK003 up to 355.0 U/mL.Furthermore,to realize the efficient production of protease,after optimization of fermentation conditions,protease activity was increased to 456.9 U/mL.Finally,protease activity of B.amyloliquefaciens FMME ZK003 reached 823.0 U/mL in a 5 L fermenter.These results indicate that B.amyloliquefaciens can efficiently produce protease,which provides a good foundation for the industrial production of protease.
基金supported by the Provincial Outstanding Youth Foundation of Jiangsu Province(BK20211529)the National Science Fund for Excellent Young Scholars(22122806)the Fundamental Research Funds for the Central Universities(JUSRP22031).
文摘The use of abundant and cheap one carbon(C1)feedstocks to produce value-added chemicals is an important approach for achieving carbon neutrality and tackling environmental problems.The conversion of C1 feedstocks to high-value chemicals is dependent on efficient C1 assimilation pathways and microbial chassis adapted for efficient incorporation.Here,we opted to summarize the natural and synthetic C1 assimilation pathways and their key factors for metabolizing C1 feedstock.Accordingly,we discussed the metabolic engineering strategies for enabling the microbial utilization of C1 feedstocks for the bioproduction of value-added chemicals.In addition,we highlighted future perspectives of C1-based biomanufacturing for achieving a low-carbon footprint for the biosynthesis of chemicals.
基金supported by the National Key R and D Program of China(2020YFA0908300)the Science Fund for Creative Research Groups of the National Natural Science Foundation of China(32021005)+1 种基金the Key Program of the National Natural Science Foundation of China(22038005)the National Natural Science Foundation of China(32070124,22008087).
文摘Microbial biorefineries to produce chemicals from renewable feedstock provides attractive advantages,including mild reaction conditions and sustainable manufacturing.However,low-efficiency biorefineries always result in an uncompetitive biological process compared to the current petrochemical process.Thus,improving microbial capacity to maximize product yield,productivity,and titer has been recognized as a central goal for bioengineers and biochemists.The knowledge of cellular biochemistry has enabled the regulation of microbial physiology to couple with chemical production.The rapid development in metabolic engineering provides diverse strategies to enhance the efficiency of chemical biosynthesis pathways.New synthetic biology tools as well as novel regulatory targets also offer the opportunity to improve biorefinery environmental adaptivity.In this review,the recent advances in building efficient biorefineries were showcased.In addition,the challenges and future perspectives of microbial host engineering for increased microbial capacity of a biorefinery were discussed.