Neural Networks (NN) are the functional unit of Deep Learning and are known to mimic the behavior of the human brain to solve complex data-driven problems. Whenever we train our own neural networks, we need to take ca...Neural Networks (NN) are the functional unit of Deep Learning and are known to mimic the behavior of the human brain to solve complex data-driven problems. Whenever we train our own neural networks, we need to take care of something called the generalization of the neural network. The performance of Artificial Neural Networks (ANN) mostly depends upon its generalization capability. In this paper, we propose an innovative approach to enhance the generalization capability of artificial neural networks (ANN) using structural redundancy. A novel perspective on handling input data prototypes and their impact on the development of generalization, which could improve to ANN architectures accuracy and reliability is described.展开更多
This paper presents a new approach to synthesize admittance function polynomials and coupling matrices for coupled resonator filters. The N + 2 transversal network method is applied to study a coupled resonator f...This paper presents a new approach to synthesize admittance function polynomials and coupling matrices for coupled resonator filters. The N + 2 transversal network method is applied to study a coupled resonator filter. This method allowed us to determine the polynomials of the reflection and transmission coefficients. A study is made for a 4 poles filter with 2 transmission zeros between the N + 2 transversal network method and the one found in the literature. A MATLAB code was designed for the numerical simulation of these coefficients for the 6, 8, and 10 pole filter with 4 transmission zeros.展开更多
文摘Neural Networks (NN) are the functional unit of Deep Learning and are known to mimic the behavior of the human brain to solve complex data-driven problems. Whenever we train our own neural networks, we need to take care of something called the generalization of the neural network. The performance of Artificial Neural Networks (ANN) mostly depends upon its generalization capability. In this paper, we propose an innovative approach to enhance the generalization capability of artificial neural networks (ANN) using structural redundancy. A novel perspective on handling input data prototypes and their impact on the development of generalization, which could improve to ANN architectures accuracy and reliability is described.
文摘This paper presents a new approach to synthesize admittance function polynomials and coupling matrices for coupled resonator filters. The N + 2 transversal network method is applied to study a coupled resonator filter. This method allowed us to determine the polynomials of the reflection and transmission coefficients. A study is made for a 4 poles filter with 2 transmission zeros between the N + 2 transversal network method and the one found in the literature. A MATLAB code was designed for the numerical simulation of these coefficients for the 6, 8, and 10 pole filter with 4 transmission zeros.