Our previous studies have reported that activation of the NLRP3(NOD-,LRR-and pyrin domain-containing protein 3)-inflammasome complex in ethanol-treated astrocytes and chronic alcohol-fed mice could be associated with ...Our previous studies have reported that activation of the NLRP3(NOD-,LRR-and pyrin domain-containing protein 3)-inflammasome complex in ethanol-treated astrocytes and chronic alcohol-fed mice could be associated with neuroinflammation and brain damage.Mesenchymal stem cell-derived extracellular vesicles(MSC-EVs)have been shown to restore the neuroinflammatory response,along with myelin and synaptic structural alterations in the prefrontal cortex,and alleviate cognitive and memory dysfunctions induced by binge-like ethanol treatment in adolescent mice.Considering the therapeutic role of the molecules contained in mesenchymal stem cell-derived extracellular vesicles,the present study analyzed whether the administration of mesenchymal stem cell-derived extracellular vesicles isolated from adipose tissue,which inhibited the activation of the NLRP3 inflammasome,was capable of reducing hippocampal neuroinflammation in adolescent mice treated with binge drinking.We demonstrated that the administration of mesenchymal stem cell-derived extracellular vesicles ameliorated the activation of the hippocampal NLRP3 inflammasome complex and other NLRs inflammasomes(e.g.,pyrin domain-containing 1,caspase recruitment domain-containing 4,and absent in melanoma 2,as well as the alterations in inflammatory genes(interleukin-1β,interleukin-18,inducible nitric oxide synthase,nuclear factor-kappa B,monocyte chemoattractant protein-1,and C–X3–C motif chemokine ligand 1)and miRNAs(miR-21a-5p,miR-146a-5p,and miR-141-5p)induced by binge-like ethanol treatment in adolescent mice.Bioinformatic analysis further revealed the involvement of miR-21a-5p and miR-146a-5p with inflammatory target genes and NOD-like receptor signaling pathways.Taken together,these findings provide novel evidence of the therapeutic potential of MSC-derived EVs to ameliorate the hippocampal neuroinflammatory response associated with NLRP3 inflammasome activation induced by binge drinking in adolescence.展开更多
In recent years,a type of extracellular vesicles named exosomes has emerged that play an important role in intercellular communication under physiological and pathological conditions.These nanovesicles (30–150 nm) co...In recent years,a type of extracellular vesicles named exosomes has emerged that play an important role in intercellular communication under physiological and pathological conditions.These nanovesicles (30–150 nm) contain proteins,RNAs and lipids,and their internalization by bystander cells could alter their normal functions.This review focuses on recent knowledge about exosomes as messengers of neuron-glia communication and their participation in the physiological and pathological functions in the central nervous system.Special emphasis is placed on the role of exosomes under toxic or pathological stimuli within the brain,in which the glial exosomes containing inflammatory molecules are able to communicate with neurons and contribute to the pathogenesis of neuroinflammation and neurodegenerative disorders.Given the small size and characteristics of exosomes,they can cross the blood-brain barrier and be used as biomarkers and diagnosis for brain disorders and neuropathologies.Finally,although the application potential of exosome is still limited,current studies indicate that exosomes represent a promising strategy to gain pathogenic information to identify therapeutically targets and biomarkers for neurological disorders and neuroinflammation.展开更多
基金supported by grants from the Spanish Ministry of Health-PNSD(2019-I039 and 2023-I024)(to MP)FEDER/Ministerio de Ciencia e Innovación-Agencia Estatal de Investigación PID2021-1243590B-I100(to VMM)+2 种基金GVA(CIAICO/2021/203)(to MP)the Primary Addiction Care Research Network(RD21/0009/0005)(to MP)a predoctoral fellowship from the Generalitat Valenciana(ACIF/2021/338)(to CPC).
文摘Our previous studies have reported that activation of the NLRP3(NOD-,LRR-and pyrin domain-containing protein 3)-inflammasome complex in ethanol-treated astrocytes and chronic alcohol-fed mice could be associated with neuroinflammation and brain damage.Mesenchymal stem cell-derived extracellular vesicles(MSC-EVs)have been shown to restore the neuroinflammatory response,along with myelin and synaptic structural alterations in the prefrontal cortex,and alleviate cognitive and memory dysfunctions induced by binge-like ethanol treatment in adolescent mice.Considering the therapeutic role of the molecules contained in mesenchymal stem cell-derived extracellular vesicles,the present study analyzed whether the administration of mesenchymal stem cell-derived extracellular vesicles isolated from adipose tissue,which inhibited the activation of the NLRP3 inflammasome,was capable of reducing hippocampal neuroinflammation in adolescent mice treated with binge drinking.We demonstrated that the administration of mesenchymal stem cell-derived extracellular vesicles ameliorated the activation of the hippocampal NLRP3 inflammasome complex and other NLRs inflammasomes(e.g.,pyrin domain-containing 1,caspase recruitment domain-containing 4,and absent in melanoma 2,as well as the alterations in inflammatory genes(interleukin-1β,interleukin-18,inducible nitric oxide synthase,nuclear factor-kappa B,monocyte chemoattractant protein-1,and C–X3–C motif chemokine ligand 1)and miRNAs(miR-21a-5p,miR-146a-5p,and miR-141-5p)induced by binge-like ethanol treatment in adolescent mice.Bioinformatic analysis further revealed the involvement of miR-21a-5p and miR-146a-5p with inflammatory target genes and NOD-like receptor signaling pathways.Taken together,these findings provide novel evidence of the therapeutic potential of MSC-derived EVs to ameliorate the hippocampal neuroinflammatory response associated with NLRP3 inflammasome activation induced by binge drinking in adolescence.
基金supported by grants from the Health Ministry,PNSD(2018-I003)Institute Carlos III and FEDER funds(RTA-Network,RD16 0017 0004)+1 种基金Spanish Ministry of Science and Innovation(SAF2015-69187R)FEDER Funds,Generalitat Valenciana
文摘In recent years,a type of extracellular vesicles named exosomes has emerged that play an important role in intercellular communication under physiological and pathological conditions.These nanovesicles (30–150 nm) contain proteins,RNAs and lipids,and their internalization by bystander cells could alter their normal functions.This review focuses on recent knowledge about exosomes as messengers of neuron-glia communication and their participation in the physiological and pathological functions in the central nervous system.Special emphasis is placed on the role of exosomes under toxic or pathological stimuli within the brain,in which the glial exosomes containing inflammatory molecules are able to communicate with neurons and contribute to the pathogenesis of neuroinflammation and neurodegenerative disorders.Given the small size and characteristics of exosomes,they can cross the blood-brain barrier and be used as biomarkers and diagnosis for brain disorders and neuropathologies.Finally,although the application potential of exosome is still limited,current studies indicate that exosomes represent a promising strategy to gain pathogenic information to identify therapeutically targets and biomarkers for neurological disorders and neuroinflammation.