Assisted by graphene oxide(GO),nano-sized LiMn0.6Fe0.4PO4 with excellent electrochemical performance was prepared by a facile hydrothermal method as cathode material for lithium ion battery.SEM and TEM images indica...Assisted by graphene oxide(GO),nano-sized LiMn0.6Fe0.4PO4 with excellent electrochemical performance was prepared by a facile hydrothermal method as cathode material for lithium ion battery.SEM and TEM images indicate that the particle size of LiMn0.6Fe0.4PO4(S2)was about 80 nm in diameter.The discharge capacity of LiMn0.6Fe0.4PO4 nanoparticles was 140.3 mAh-g^1 in the first cycle.It showed that graphene oxide was able to restrict the growth of LiMn0.6Fe0.4PO4 and it in situ reduction of GO could improve the electrical conductivity of LiMn0.6Fe0.4PO4 material.展开更多
The effects of NaA1H4, TiF3 and NaA1H4-TiF3 co-additive on dehydriding reaction of Mg(A1H4)2 are systematically investigated. The on- set dehydrogenation temperature of the co-doped Mg(A1H4)2 composites decreased ...The effects of NaA1H4, TiF3 and NaA1H4-TiF3 co-additive on dehydriding reaction of Mg(A1H4)2 are systematically investigated. The on- set dehydrogenation temperature of the co-doped Mg(A1H4)2 composites decreased to 74 ℃, which is about 59 ℃ lower than that of pure Mg(A1H4)2. The dehydrogenation kinetics of NaA1H4-TiF3 co-doped Mg(A1H4)2 sample was also improved, which released about 94% hydrogen within 48 min, but no visible hydrogen was released from pure Mg(A1H4)2 under the same conditions. The activation energy of co-doped Mg(A1H4)2 was 85.6 kJ.mol-t, which was significantly lower than that of additive-free Mg(A1H4)2 sample. The synergetic effects of NaA1H4 and TiF3 on the dehydrogenation performance of Mg(A1H4)2 were confirmed. In addition, a possible catalytic mechanism is discussed, regarding the different roles of NaA1H4 and TiF3 on Mg(A1H4)2.展开更多
Hydrogen is a popular clean high-energy-density fuel.However,its utilization is limited by the challenges toward low-cost hydrogen production and safe hydrogen storage.Fortunately,these issues can be addressed using p...Hydrogen is a popular clean high-energy-density fuel.However,its utilization is limited by the challenges toward low-cost hydrogen production and safe hydrogen storage.Fortunately,these issues can be addressed using promising hydrogen storage materials such as B–H compounds.Hydrogen stored in B–H compounds can be released by hydrolysis at room temperature,which requires catalysts to increase the rate of the reaction.Recently,several effective approaches have been developed for hydrogen generation by catalyzing the hydrolysis of B–H compounds.This review summarizes the existing research on the use of nanoparticles loaded on hydrogels as catalysts for the hydrolysis of B–H compounds.First,the factors affecting the hydrolysis rate,such as temperature,p H,reactant concentration,and type of nano particles,were investigated.Further,the preparation methods(in situ reduction,one-pot method,template adsorption,etc.)for the hydrogel catalysts and the types of loaded catalysts were determined.Additionally,the hydrogel catalysts that can respond to magnetic fields,ultrasound fields,optical fields,and other physical fields are introduced.Finally,the issues and future developments of hydrogel-based catalysts are discussed.This review can inspire deeper investigations and provide guidance for the study of hydrogel catalysts in the field of hydrogen production via hydrolysis.展开更多
Two-dimensional(2D)materials are potential candidates for electronic devices due to their unique structures and exceptional physical properties,making them a focal point in nanotechnology research.Accurate assessment ...Two-dimensional(2D)materials are potential candidates for electronic devices due to their unique structures and exceptional physical properties,making them a focal point in nanotechnology research.Accurate assessment of the mechanical and tribological properties of 2D materials is imperative to fully exploit their potential across diverse applications.However,their nanoscale thickness and planar nature pose significant challenges in testing and characterizing their mechanical properties.Among the in situ characterization techniques,atomic force microscopy(AFM)has gained widespread applications in exploring the mechanical behaviour of nanomaterials,because of the easy measurement capability of nano force and displacement from the AFM tips.Specifically,AFM-based force spectroscopy is a common approach for studying the mechanical and tribological properties of 2D materials.This review comprehensively details the methods based on normal force spectroscopy,which are utilized to test and characterize the elastic and fracture properties,adhesion,and fatigue of 2D materials.Additionally,the methods using lateral force spectroscopy can characterize the interfacial properties of 2D materials,including surface friction of 2D materials,shear behaviour of interlayers as well as nanoflake-substrate interfaces.The influence of various factors,such as testing methods,external environments,and the properties of test samples,on the measured mechanical properties is also addressed.In the end,the current challenges and issues in AFM-based measurements of mechanical and tribological properties of 2D materials are discussed,which identifies the trend in the combination of multiple methods concerning the future development of the in situ testing techniques.展开更多
Strain engineering,as a cutting-edge method for modulating the electronic structure of catalysts,plays a crucial role in regulating the interaction between the catalytic surface and the adsorbed molecules.The electroc...Strain engineering,as a cutting-edge method for modulating the electronic structure of catalysts,plays a crucial role in regulating the interaction between the catalytic surface and the adsorbed molecules.The electrocatalytic performance is influenced by the electronic structure,which can be achieved by introducing the external forces or stresses to adjust interatomic spacing between surface atoms.The challenges in strain engineering research lie in accurately understanding the mechanical impact of strain on performance.This paper first introduces the basic strategy for generating the strain,summarizes the different strain generation forms and their advantages and disadvantages.The progress in researching the characterization means for the lattice strains and their applications in the field of electrocatalysis is also emphasized.Finally,the challenges of strain engineering are introduced,and an outlook on the future research directions is provided.展开更多
As typical high-capacity complex hydrides,lightweight hydrides have attracted intensive attention due to their high gravimetric and volumetric energy densities of hydrogen storage.However,lightweight hydrides also hav...As typical high-capacity complex hydrides,lightweight hydrides have attracted intensive attention due to their high gravimetric and volumetric energy densities of hydrogen storage.However,lightweight hydrides also have high thermodynamic stability and poor kinetics,so they ususally require high hydrogen desorption temperature and show inferior reversibility under mild conditions.This review summarizes recent progresses on the endeavor of overcoming thermodynamic and kinetic challenges for Mg based hydrides,lightweight metal borohydrides and alanates.First,the current state,advantages and challenges for Mg-based hydrides and lightweight metal hydrides are introduced.Then,alloying,nanoscaling and appropriate doping techniques are demonstrated to decrease the hydrogen desorption temperature and promote the reversibility behavior in lightweight hydrides.Selected scaffolds materials,approaches for synthesis of nanoconfined systems and hydriding-dehydriding properties are reviewed.In addition,the evolution of various dopants and their effects on the hydrogen storage properties of lightweight hydrides are investigated,and the relevant catalytic mechanisms are summarized.Finally,the remaining challenges and the sustainable research efforts are discussed.展开更多
基金supported by 973(2011CB935900,2010CB631303)NSFC(21231005,51071087)+4 种基金111 Project(B12015)MOE(IRT13R30)the Research Fund for the Doctoral Program of Higher Education of China(20120031110001)Tianjin Sci&Tech Project(10SYSYJC27600)the Nature Science Foundation of Tianjin(11JCYBJC07700)
文摘Assisted by graphene oxide(GO),nano-sized LiMn0.6Fe0.4PO4 with excellent electrochemical performance was prepared by a facile hydrothermal method as cathode material for lithium ion battery.SEM and TEM images indicate that the particle size of LiMn0.6Fe0.4PO4(S2)was about 80 nm in diameter.The discharge capacity of LiMn0.6Fe0.4PO4 nanoparticles was 140.3 mAh-g^1 in the first cycle.It showed that graphene oxide was able to restrict the growth of LiMn0.6Fe0.4PO4 and it in situ reduction of GO could improve the electrical conductivity of LiMn0.6Fe0.4PO4 material.
基金supported by the MOST Project(2010CB631303,2012AA051901)NSFC(5117108)+1 种基金111 Project(B12015)MOE(IRT-13R30)
文摘The effects of NaA1H4, TiF3 and NaA1H4-TiF3 co-additive on dehydriding reaction of Mg(A1H4)2 are systematically investigated. The on- set dehydrogenation temperature of the co-doped Mg(A1H4)2 composites decreased to 74 ℃, which is about 59 ℃ lower than that of pure Mg(A1H4)2. The dehydrogenation kinetics of NaA1H4-TiF3 co-doped Mg(A1H4)2 sample was also improved, which released about 94% hydrogen within 48 min, but no visible hydrogen was released from pure Mg(A1H4)2 under the same conditions. The activation energy of co-doped Mg(A1H4)2 was 85.6 kJ.mol-t, which was significantly lower than that of additive-free Mg(A1H4)2 sample. The synergetic effects of NaA1H4 and TiF3 on the dehydrogenation performance of Mg(A1H4)2 were confirmed. In addition, a possible catalytic mechanism is discussed, regarding the different roles of NaA1H4 and TiF3 on Mg(A1H4)2.
基金supported by National Natural Science Fund of China(Grant No.12172118,52071125)the Research Program of Local Science and Technology Development under the Guidance of Central(216Z4402G)+1 种基金Science and Technology Project of Hebei Education Department(BJK2022015)support from“Yuanguang”Scholar Program of Hebei University of Technology。
文摘Hydrogen is a popular clean high-energy-density fuel.However,its utilization is limited by the challenges toward low-cost hydrogen production and safe hydrogen storage.Fortunately,these issues can be addressed using promising hydrogen storage materials such as B–H compounds.Hydrogen stored in B–H compounds can be released by hydrolysis at room temperature,which requires catalysts to increase the rate of the reaction.Recently,several effective approaches have been developed for hydrogen generation by catalyzing the hydrolysis of B–H compounds.This review summarizes the existing research on the use of nanoparticles loaded on hydrogels as catalysts for the hydrolysis of B–H compounds.First,the factors affecting the hydrolysis rate,such as temperature,p H,reactant concentration,and type of nano particles,were investigated.Further,the preparation methods(in situ reduction,one-pot method,template adsorption,etc.)for the hydrogel catalysts and the types of loaded catalysts were determined.Additionally,the hydrogel catalysts that can respond to magnetic fields,ultrasound fields,optical fields,and other physical fields are introduced.Finally,the issues and future developments of hydrogel-based catalysts are discussed.This review can inspire deeper investigations and provide guidance for the study of hydrogel catalysts in the field of hydrogen production via hydrolysis.
基金support from the National Natural Science Foundation of China(Nos.52005151,12172118,52205591,12227801,and 12072005)the Local Science and Technology Development Fund Projects Guided by the Central Government of China(No.236Z1810G)+4 种基金the Natural Science Foundation of Hebei Province(Nos.E2021202008 and E2021202100)the Fund for Innovative Research Groups of Natural Science Foundation of Hebei Province(No.A2020202002)the Key Program of Research and Development of Hebei Province(No.202030507040009)the Project of High-Level Talents Introduction of Hebei Province(No.2021HBQZYCSB009)the Key Project of National Natural Science Foundation of Tianjin(No.S20ZDF077).
文摘Two-dimensional(2D)materials are potential candidates for electronic devices due to their unique structures and exceptional physical properties,making them a focal point in nanotechnology research.Accurate assessment of the mechanical and tribological properties of 2D materials is imperative to fully exploit their potential across diverse applications.However,their nanoscale thickness and planar nature pose significant challenges in testing and characterizing their mechanical properties.Among the in situ characterization techniques,atomic force microscopy(AFM)has gained widespread applications in exploring the mechanical behaviour of nanomaterials,because of the easy measurement capability of nano force and displacement from the AFM tips.Specifically,AFM-based force spectroscopy is a common approach for studying the mechanical and tribological properties of 2D materials.This review comprehensively details the methods based on normal force spectroscopy,which are utilized to test and characterize the elastic and fracture properties,adhesion,and fatigue of 2D materials.Additionally,the methods using lateral force spectroscopy can characterize the interfacial properties of 2D materials,including surface friction of 2D materials,shear behaviour of interlayers as well as nanoflake-substrate interfaces.The influence of various factors,such as testing methods,external environments,and the properties of test samples,on the measured mechanical properties is also addressed.In the end,the current challenges and issues in AFM-based measurements of mechanical and tribological properties of 2D materials are discussed,which identifies the trend in the combination of multiple methods concerning the future development of the in situ testing techniques.
基金supported by the National Natural Science Foundation of China(Nos.12172118,52071125,12227801)the Research Program of Local Science and Technology Development under the Guidance of Central(No.216Z4402G)+2 种基金Science Research Project of Hebei Education Department(No.JZX2023004)Opening fund of State Key Laboratory of Nonlinear Mechanics(LNM)National Key Research and Development Program of China(No.2019YFC0840709)。
文摘Strain engineering,as a cutting-edge method for modulating the electronic structure of catalysts,plays a crucial role in regulating the interaction between the catalytic surface and the adsorbed molecules.The electrocatalytic performance is influenced by the electronic structure,which can be achieved by introducing the external forces or stresses to adjust interatomic spacing between surface atoms.The challenges in strain engineering research lie in accurately understanding the mechanical impact of strain on performance.This paper first introduces the basic strategy for generating the strain,summarizes the different strain generation forms and their advantages and disadvantages.The progress in researching the characterization means for the lattice strains and their applications in the field of electrocatalysis is also emphasized.Finally,the challenges of strain engineering are introduced,and an outlook on the future research directions is provided.
基金supported by the National Key R&D Program of China (2018YFB1502102)the National Natural Science Foundation of China (51571124, 51571125, 51871123 and 51501072)+1 种基金111 Project (B12015)MOE (IRT13R30)
文摘As typical high-capacity complex hydrides,lightweight hydrides have attracted intensive attention due to their high gravimetric and volumetric energy densities of hydrogen storage.However,lightweight hydrides also have high thermodynamic stability and poor kinetics,so they ususally require high hydrogen desorption temperature and show inferior reversibility under mild conditions.This review summarizes recent progresses on the endeavor of overcoming thermodynamic and kinetic challenges for Mg based hydrides,lightweight metal borohydrides and alanates.First,the current state,advantages and challenges for Mg-based hydrides and lightweight metal hydrides are introduced.Then,alloying,nanoscaling and appropriate doping techniques are demonstrated to decrease the hydrogen desorption temperature and promote the reversibility behavior in lightweight hydrides.Selected scaffolds materials,approaches for synthesis of nanoconfined systems and hydriding-dehydriding properties are reviewed.In addition,the evolution of various dopants and their effects on the hydrogen storage properties of lightweight hydrides are investigated,and the relevant catalytic mechanisms are summarized.Finally,the remaining challenges and the sustainable research efforts are discussed.
基金supported by the Science and Technology Project of Hebei Education Department (Grant No.JZX20230004)National Natural Science Fund of China (Grant No.12172118)+1 种基金Research Program of Local Science and Technology Development under the guidance of Central China (Grant No.216Z4402G)Open Project of the Chongqing Key Laboratory of Green (Grant No.GATRI2021F01005B).