In RFID(Radio Frequency IDentification)system,when multiple tags are in the operating range of one reader and send their information to the reader simultaneously,the signals of these tags are superimposed in the air,w...In RFID(Radio Frequency IDentification)system,when multiple tags are in the operating range of one reader and send their information to the reader simultaneously,the signals of these tags are superimposed in the air,which results in a collision and leads to the degrading of tags identifying efficiency.To improve the multiple tags’identifying efficiency due to collision,a physical layer network coding based binary search tree algorithm(PNBA)is proposed in this paper.PNBA pushes the conflicting signal information of multiple tags into a stack,which is discarded by the traditional anti-collision algorithm.In addition,physical layer network coding is exploited by PNBA to obtain unread tag information through the decoding operation of physical layer network coding using the conflicting information in the stack.Therefore,PNBA reduces the number of interactions between reader and tags,and improves the tags identification efficiency.Theoretical analysis and simulation results using MATLAB demonstrate that PNBA reduces the number of readings,and improve RFID identification efficiency.Especially,when the number of tags to be identified is 100,the average needed reading number of PNBA is 83%lower than the basic binary search tree algorithm,43%lower than reverse binary search tree algorithm,and its reading efficiency reaches 0.93.展开更多
Quantum critical phenomena in the quasi-one-dimensional limit remain an open issue.We report the uniaxial stress effect on the quasi-one-dimensional Kondo lattice CeCo_(2)Ga_(8) by electric transport and AC heat capac...Quantum critical phenomena in the quasi-one-dimensional limit remain an open issue.We report the uniaxial stress effect on the quasi-one-dimensional Kondo lattice CeCo_(2)Ga_(8) by electric transport and AC heat capacity measurements.CeCo_(2)Ga_(8) is speculated to sit in close vicinity but on the quantum-disordered side of a quantum critical point.Upon compressing the c axis,parallel to the Ce-Ce chain,the onset of coherent Kondo effect is enhanced.In contrast,the electronic specific heat diverges more rapidly at low temperature when the intra-chain distance is elongated by compressions along a or b axis.These results suggest that a tensile intra-chain strain(ε_(c)>0)pushes CeCo_(2)Ga_(8) closer to the quantum critical point,while a compressive intra-chain strain(ε_(c)<0)likely causes departure.Our work provides a rare paradigm of manipulation near a quantum critical point in a quasi-1D Kondo lattice by uniaxial stress,and paves the way for further investigations on the unique feature of quantum criticality in the quasi-1D limit.展开更多
基金the National Natural Science Foundation of China under Grant 61502411Natural Science Foundation of Jiangsu Province under Grant BK20150432 and BK20151299+7 种基金Natural Science Research Project for Universities of Jiangsu Province under Grant 15KJB520034China Postdoctoral Science Foundation under Grant 2015M581843Jiangsu Provincial Qinglan ProjectTeachers Overseas Study Program of Yancheng Institute of TechnologyJiangsu Provincial Government Scholarship for Overseas StudiesTalents Project of Yancheng Institute of Technology under Grant KJC2014038“2311”Talent Project of Yancheng Institute of TechnologyOpen Fund of Modern Agricultural Resources Intelligent Management and Application Laboratory of Huzhou Normal University.
文摘In RFID(Radio Frequency IDentification)system,when multiple tags are in the operating range of one reader and send their information to the reader simultaneously,the signals of these tags are superimposed in the air,which results in a collision and leads to the degrading of tags identifying efficiency.To improve the multiple tags’identifying efficiency due to collision,a physical layer network coding based binary search tree algorithm(PNBA)is proposed in this paper.PNBA pushes the conflicting signal information of multiple tags into a stack,which is discarded by the traditional anti-collision algorithm.In addition,physical layer network coding is exploited by PNBA to obtain unread tag information through the decoding operation of physical layer network coding using the conflicting information in the stack.Therefore,PNBA reduces the number of interactions between reader and tags,and improves the tags identification efficiency.Theoretical analysis and simulation results using MATLAB demonstrate that PNBA reduces the number of readings,and improve RFID identification efficiency.Especially,when the number of tags to be identified is 100,the average needed reading number of PNBA is 83%lower than the basic binary search tree algorithm,43%lower than reverse binary search tree algorithm,and its reading efficiency reaches 0.93.
文摘Quantum critical phenomena in the quasi-one-dimensional limit remain an open issue.We report the uniaxial stress effect on the quasi-one-dimensional Kondo lattice CeCo_(2)Ga_(8) by electric transport and AC heat capacity measurements.CeCo_(2)Ga_(8) is speculated to sit in close vicinity but on the quantum-disordered side of a quantum critical point.Upon compressing the c axis,parallel to the Ce-Ce chain,the onset of coherent Kondo effect is enhanced.In contrast,the electronic specific heat diverges more rapidly at low temperature when the intra-chain distance is elongated by compressions along a or b axis.These results suggest that a tensile intra-chain strain(ε_(c)>0)pushes CeCo_(2)Ga_(8) closer to the quantum critical point,while a compressive intra-chain strain(ε_(c)<0)likely causes departure.Our work provides a rare paradigm of manipulation near a quantum critical point in a quasi-1D Kondo lattice by uniaxial stress,and paves the way for further investigations on the unique feature of quantum criticality in the quasi-1D limit.