Theγ-ray emission from the W51 complex is widely acknowledged to be attributed to the interaction between the cosmic rays(CRs)accelerated by the shock of supernova remnant(SNR)W51C and the dense molecular clouds in t...Theγ-ray emission from the W51 complex is widely acknowledged to be attributed to the interaction between the cosmic rays(CRs)accelerated by the shock of supernova remnant(SNR)W51C and the dense molecular clouds in the adjacent star-forming region,W51B.However,the maximum acceleration capability of W51C for CRs remains elusive.Based on observations conducted with the Large High Altitude Air Shower Observatory(LHAASO),we report a significant detection ofγrays emanating from the W51 complex,with energies from 2 to 200 TeV.The LHAASO measurements,for the first time,extend theγ-ray emission from the W51 complex beyond 100 TeV and reveal a significant spectrum bending at tens of TeV.By combining the"π^(0)-decay bump"featured data from Fermi-LAT,the broadbandγ-ray spectrum of the W51 region can be well-characterized by a simple pp-collision model.The observed spectral bending feature suggests an exponential cutoff at~400 TeV or a power-law break at~200 TeV in the CR proton spectrum,most likely providing the first evidence of SNRs serving as CR accelerators approaching the PeV regime.Additionally,two young star clusters within W51B could also be theoretically viable to produce the most energeticγrays observed by LHAASO.Our findings strongly support the presence of extreme CR accelerators within the W51 complex and provide new insights into the origin of Galactic CRs.展开更多
The mechanical properties and corrosion resistance of magnesium alloy composites were improved bythe addition of MgO surface modified tricalcium phosphate ceramic nanoparticles (m-β-TCP). Mg-3Zn-0.8Zr composites with...The mechanical properties and corrosion resistance of magnesium alloy composites were improved bythe addition of MgO surface modified tricalcium phosphate ceramic nanoparticles (m-β-TCP). Mg-3Zn-0.8Zr composites with unmodified (MZZT) and modified (MZZMT) nanoparticles were produced byhigh shear mixing technology. Effects of MgO m-β-TCP nanoparticles on the microstructure, mechanicalproperties, electrochemical corrosion properties and cytocompatibility of Mg-Zn-Zr/β-TCP compositeswere investigated. After hot extrusion deformation and dynamic recrystallization, the grain size ofMZZMT was the half size of MZZT and the distribution of m-β-TCP particles in the matrix was moreuniform than β-TCP particles. The yield tensile strength (YTS), ultimate tensile strength (UTS), andcorrosion potential (Ecorr) of MZZMT were higher than MZZT;the corrosion current density (Icorr) ofMZZMT was lower than MZZT. Cell proliferation of co-cultured MZZMT and MZZT composite sampleswere roughly the same and the cell number at each time point is higher for MZZMT than for MZZTsamples.展开更多
基金supported by the National Natural Science Foundation of China(12393851,12261160362,12393852,12393853,12393854,12022502,2205314,12105301,12105292,12105294,12005246,and 12173039)Department of Science and Technology of Sichuan Province(24NSFJQ0060 and 2024NSFSC0449)+5 种基金Project for Young Scientists in Basic Research of Chinese Academy of Sciences(YSBR-061,2022010)Thailand by the National Science and Technology Development Agency(NSTDA)National Research Council of Thailand(NRCT):High-Potential Research Team Grant Program(N42A650868)the Chengdu Management Committee of Tianfu New Area for constant financial support to research with LHAASO datathe Milky Way Imaging Scroll Painting(MWISP)project,sponsored by the National Key R&D Program of China(2023YFA1608000 and 2017YFA0402701)the CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH047)。
文摘Theγ-ray emission from the W51 complex is widely acknowledged to be attributed to the interaction between the cosmic rays(CRs)accelerated by the shock of supernova remnant(SNR)W51C and the dense molecular clouds in the adjacent star-forming region,W51B.However,the maximum acceleration capability of W51C for CRs remains elusive.Based on observations conducted with the Large High Altitude Air Shower Observatory(LHAASO),we report a significant detection ofγrays emanating from the W51 complex,with energies from 2 to 200 TeV.The LHAASO measurements,for the first time,extend theγ-ray emission from the W51 complex beyond 100 TeV and reveal a significant spectrum bending at tens of TeV.By combining the"π^(0)-decay bump"featured data from Fermi-LAT,the broadbandγ-ray spectrum of the W51 region can be well-characterized by a simple pp-collision model.The observed spectral bending feature suggests an exponential cutoff at~400 TeV or a power-law break at~200 TeV in the CR proton spectrum,most likely providing the first evidence of SNRs serving as CR accelerators approaching the PeV regime.Additionally,two young star clusters within W51B could also be theoretically viable to produce the most energeticγrays observed by LHAASO.Our findings strongly support the presence of extreme CR accelerators within the W51 complex and provide new insights into the origin of Galactic CRs.
基金The authors acknowledge the financial support for this work from the National Nature Science Foundation of China(No.51371126 and No.51271131)Science and Technology supporting program in Tianjin(No.14ZCZDGX00007)Major science and technology projects in Tianjin(No.15ZXQXSY00080).
文摘The mechanical properties and corrosion resistance of magnesium alloy composites were improved bythe addition of MgO surface modified tricalcium phosphate ceramic nanoparticles (m-β-TCP). Mg-3Zn-0.8Zr composites with unmodified (MZZT) and modified (MZZMT) nanoparticles were produced byhigh shear mixing technology. Effects of MgO m-β-TCP nanoparticles on the microstructure, mechanicalproperties, electrochemical corrosion properties and cytocompatibility of Mg-Zn-Zr/β-TCP compositeswere investigated. After hot extrusion deformation and dynamic recrystallization, the grain size ofMZZMT was the half size of MZZT and the distribution of m-β-TCP particles in the matrix was moreuniform than β-TCP particles. The yield tensile strength (YTS), ultimate tensile strength (UTS), andcorrosion potential (Ecorr) of MZZMT were higher than MZZT;the corrosion current density (Icorr) ofMZZMT was lower than MZZT. Cell proliferation of co-cultured MZZMT and MZZT composite sampleswere roughly the same and the cell number at each time point is higher for MZZMT than for MZZTsamples.