A computational strategy is presented for the nonlinear dynamic analysis of large- scale combined finite/discrete element systems on a PC cluster.In this strategy,a dual-level domain decomposition scheme is adopted to...A computational strategy is presented for the nonlinear dynamic analysis of large- scale combined finite/discrete element systems on a PC cluster.In this strategy,a dual-level domain decomposition scheme is adopted to implement the dynamic domain decomposition.The domain decomposition approach perfectly matches the requirement of reducing the memory size per processor of the calculation.To treat the contact between boundary elements in neighbouring subdomains,the elements in a subdomain are classified into internal,interfacial and external elements.In this way,all the contact detect algorithms developed for a sequential computation could be adopted directly in the parallel computation.Numerical examples show that this implementation is suitable for simulating large-scale problems.Two typical numerical examples are given to demonstrate the parallel efficiency and scalability on a PC cluster.展开更多
The finite element method has been considered as one of the most significant engineering advances of the twentieth century. This computational methodology has made substantial impact on many fields in science and also...The finite element method has been considered as one of the most significant engineering advances of the twentieth century. This computational methodology has made substantial impact on many fields in science and also has profoundly changed engineering design procedures and practice. This paper, mainly froln a solid mechanics perspective, and the Swansea viewpoint in particular, describes very briefly the origin of the methodology, then summaries selected milestones of the technical developments that have taken place over the last fifty years and illustrates their application to some practical engineering problems.展开更多
This paper presents a comprehensive review of modeling of alkali-silica reaction(ASR)in concrete.Such modeling is essential for investigating the chemical expansion mechanism and the subsequent influence on the mechan...This paper presents a comprehensive review of modeling of alkali-silica reaction(ASR)in concrete.Such modeling is essential for investigating the chemical expansion mechanism and the subsequent influence on the mechanical aspects of the material.The concept of ASR and the mechanism of expansion are first outlined,and the stateof-the-art of modeling for ASR,the focus of the paper,is then presented in detail.The modeling includes theoretical approaches,meso-and macroscopic models for ASR analysis.The theoretical approaches dealt with the chemical reaction mechanism and were used for predicting pessimum size of aggregate.Mesoscopic models have attempted to explain the mechanism of mechanical deterioration of ASR-affected concrete at material scale.The macroscopic models,chemomechanical coupling models,have been generally dcveloped by combining the chemical reaction kinetics with linear or nonlinear mechanical constitutive,and were applied to reproduce and predict the long-term behavior of struetures suffering from ASR.Finally,a conclusion and discussion of the modcling are given.展开更多
A combined lattice Boltzmann and discrete element approach is proposedfor numerical modelling of magnetorheological fluids. In its formulation, the particledynamics is simulated by the discrete element method, while t...A combined lattice Boltzmann and discrete element approach is proposedfor numerical modelling of magnetorheological fluids. In its formulation, the particledynamics is simulated by the discrete element method, while the fluid field is resolvedwith the lattice Boltzmann method. The coupling between the fluid and the particlesare realized through the hydrodynamic interactions. Procedures for computing magnetic, contact and hydrodynamic forces are discussed in detail. The applicability ofthe proposed solution procedure is illustrated via a two-stage simulation of a MR fluidproblem with four different particle volume fractions. At the first stage, simulationsare performed for the particle chain formation upon application of an external magnetic field;and at the second stage, the rheological properties of the MR fluid underdifferent shear loading conditions are investigated with the particle chains establishedat the first stage as the initial configuration.展开更多
基金The project supported by the National Natural Science Foundation of China (10372114) and the Engineering and Physical Sciences Research Council (EPSRC) of UK (GR/R21219)
文摘A computational strategy is presented for the nonlinear dynamic analysis of large- scale combined finite/discrete element systems on a PC cluster.In this strategy,a dual-level domain decomposition scheme is adopted to implement the dynamic domain decomposition.The domain decomposition approach perfectly matches the requirement of reducing the memory size per processor of the calculation.To treat the contact between boundary elements in neighbouring subdomains,the elements in a subdomain are classified into internal,interfacial and external elements.In this way,all the contact detect algorithms developed for a sequential computation could be adopted directly in the parallel computation.Numerical examples show that this implementation is suitable for simulating large-scale problems.Two typical numerical examples are given to demonstrate the parallel efficiency and scalability on a PC cluster.
文摘The finite element method has been considered as one of the most significant engineering advances of the twentieth century. This computational methodology has made substantial impact on many fields in science and also has profoundly changed engineering design procedures and practice. This paper, mainly froln a solid mechanics perspective, and the Swansea viewpoint in particular, describes very briefly the origin of the methodology, then summaries selected milestones of the technical developments that have taken place over the last fifty years and illustrates their application to some practical engineering problems.
基金The authors acknowledge the support of the National Key Basic Research Program of China(Nos.2010CB731504 and 2011CB013602)the research funding from the State Key Laboratory of Hydroscience and Engineering,Tsinghua University(No.2010-TC-1).
文摘This paper presents a comprehensive review of modeling of alkali-silica reaction(ASR)in concrete.Such modeling is essential for investigating the chemical expansion mechanism and the subsequent influence on the mechanical aspects of the material.The concept of ASR and the mechanism of expansion are first outlined,and the stateof-the-art of modeling for ASR,the focus of the paper,is then presented in detail.The modeling includes theoretical approaches,meso-and macroscopic models for ASR analysis.The theoretical approaches dealt with the chemical reaction mechanism and were used for predicting pessimum size of aggregate.Mesoscopic models have attempted to explain the mechanism of mechanical deterioration of ASR-affected concrete at material scale.The macroscopic models,chemomechanical coupling models,have been generally dcveloped by combining the chemical reaction kinetics with linear or nonlinear mechanical constitutive,and were applied to reproduce and predict the long-term behavior of struetures suffering from ASR.Finally,a conclusion and discussion of the modcling are given.
文摘A combined lattice Boltzmann and discrete element approach is proposedfor numerical modelling of magnetorheological fluids. In its formulation, the particledynamics is simulated by the discrete element method, while the fluid field is resolvedwith the lattice Boltzmann method. The coupling between the fluid and the particlesare realized through the hydrodynamic interactions. Procedures for computing magnetic, contact and hydrodynamic forces are discussed in detail. The applicability ofthe proposed solution procedure is illustrated via a two-stage simulation of a MR fluidproblem with four different particle volume fractions. At the first stage, simulationsare performed for the particle chain formation upon application of an external magnetic field;and at the second stage, the rheological properties of the MR fluid underdifferent shear loading conditions are investigated with the particle chains establishedat the first stage as the initial configuration.