Difficulty in communicating and interacting with other people are mainly due to the neurological disorder called autism spectrum disorder(ASD)diseases.These diseases can affect the nerves at any stage of the human bein...Difficulty in communicating and interacting with other people are mainly due to the neurological disorder called autism spectrum disorder(ASD)diseases.These diseases can affect the nerves at any stage of the human being in childhood,adolescence,and adulthood.ASD is known as a behavioral disease due to the appearances of symptoms over thefirst two years that continue until adulthood.Most of the studies prove that the early detection of ASD helps improve the behavioral characteristics of patients with ASD.The detection of ASD is a very challenging task among various researchers.Machine learning(ML)algorithms still act very intelligent by learning the complex data and pre-dicting quality results.In this paper,ensemble ML techniques for the early detec-tion of ASD are proposed.In this detection,the dataset isfirst processed using three ML algorithms such as sequential minimal optimization with support vector machine,Kohonen self-organizing neural network,and random forest algorithm.The prediction results of these ML algorithms(ensemble)further use the bagging concept called max voting to predict thefinal result.The accuracy,sensitivity,and specificity of the proposed system are calculated using confusion matrix.The pro-posed ensemble technique performs better than state-of-the art ML algorithms.展开更多
In signal processing and communication systems,digital filters are widely employed.In some circumstances,the reliability of those systems is crucial,necessitating the use of fault tolerant filter implementations.Many ...In signal processing and communication systems,digital filters are widely employed.In some circumstances,the reliability of those systems is crucial,necessitating the use of fault tolerant filter implementations.Many strategies have been presented throughout the years to achieve fault tolerance by utilising the structure and properties of the filters.As technology advances,more complicated systems with several filters become possible.Some of the filters in those complicated systems frequently function in parallel,for example,by applying the same filter to various input signals.Recently,a simple strategy for achieving fault tolerance that takes advantage of the availability of parallel filters was given.Many fault-tolerant ways that take advantage of the filter’s structure and properties have been proposed throughout the years.The primary idea is to use structured authentication scan chains to study the internal states of finite impulse response(FIR)components in order to detect and recover the exact state of faulty modules through the state of non-faulty modules.Finally,a simple solution of Double modular redundancy(DMR)based fault tolerance was developed that takes advantage of the availability of parallel filters for image denoising.This approach is expanded in this short to display how parallel filters can be protected using error correction codes(ECCs)in which each filter is comparable to a bit in a standard ECC.“Advanced error recovery for parallel systems,”the suggested technique,can find and eliminate hidden defects in FIR modules,and also restore the system from multiple failures impacting two FIR modules.From the implementation,Xilinx ISE 14.7 was found to have given significant error reduction capability in the fault calculations and reduction in the area which reduces the cost of implementation.Faults were introduced in all the outputs of the functional filters and found that the fault in every output is corrected.展开更多
文摘Difficulty in communicating and interacting with other people are mainly due to the neurological disorder called autism spectrum disorder(ASD)diseases.These diseases can affect the nerves at any stage of the human being in childhood,adolescence,and adulthood.ASD is known as a behavioral disease due to the appearances of symptoms over thefirst two years that continue until adulthood.Most of the studies prove that the early detection of ASD helps improve the behavioral characteristics of patients with ASD.The detection of ASD is a very challenging task among various researchers.Machine learning(ML)algorithms still act very intelligent by learning the complex data and pre-dicting quality results.In this paper,ensemble ML techniques for the early detec-tion of ASD are proposed.In this detection,the dataset isfirst processed using three ML algorithms such as sequential minimal optimization with support vector machine,Kohonen self-organizing neural network,and random forest algorithm.The prediction results of these ML algorithms(ensemble)further use the bagging concept called max voting to predict thefinal result.The accuracy,sensitivity,and specificity of the proposed system are calculated using confusion matrix.The pro-posed ensemble technique performs better than state-of-the art ML algorithms.
文摘In signal processing and communication systems,digital filters are widely employed.In some circumstances,the reliability of those systems is crucial,necessitating the use of fault tolerant filter implementations.Many strategies have been presented throughout the years to achieve fault tolerance by utilising the structure and properties of the filters.As technology advances,more complicated systems with several filters become possible.Some of the filters in those complicated systems frequently function in parallel,for example,by applying the same filter to various input signals.Recently,a simple strategy for achieving fault tolerance that takes advantage of the availability of parallel filters was given.Many fault-tolerant ways that take advantage of the filter’s structure and properties have been proposed throughout the years.The primary idea is to use structured authentication scan chains to study the internal states of finite impulse response(FIR)components in order to detect and recover the exact state of faulty modules through the state of non-faulty modules.Finally,a simple solution of Double modular redundancy(DMR)based fault tolerance was developed that takes advantage of the availability of parallel filters for image denoising.This approach is expanded in this short to display how parallel filters can be protected using error correction codes(ECCs)in which each filter is comparable to a bit in a standard ECC.“Advanced error recovery for parallel systems,”the suggested technique,can find and eliminate hidden defects in FIR modules,and also restore the system from multiple failures impacting two FIR modules.From the implementation,Xilinx ISE 14.7 was found to have given significant error reduction capability in the fault calculations and reduction in the area which reduces the cost of implementation.Faults were introduced in all the outputs of the functional filters and found that the fault in every output is corrected.