In order to investigate the effect of the catalyst loading mode on the mechanical properties of Si_(3)N_(4) composite MgO-C refractories prepared by nitridation,fused magnesia,flake graphite,silicon powder,and phenoli...In order to investigate the effect of the catalyst loading mode on the mechanical properties of Si_(3)N_(4) composite MgO-C refractories prepared by nitridation,fused magnesia,flake graphite,silicon powder,and phenolic resin were used as the main raw materials,and ferric nitrate as the catalyst to prepare refractories by nitriding at 1350℃.The effects of different catalyst supports(silicon powder,silicon powder+phenolic resin)on the formation of Si_(3)N_(4) in MgO-C refractories and the properties of refractories were studied.The results show that the silicon powder+resin catalyst support promotes the participation ofα-Si_(3)N_(4) in the reaction to generateβ-Si_(3)N_(4) and MgSiN_(2),and generates more SiC.However,this loading mode causes more gas to escape from the refractories and loosens the material structure,which reduces the mechanical properties.On the contrary,MgO-C refractories prepared by nitridation with silicon powder-supported catalysts under the same conditions show higher density and better mechanical properties.展开更多
基金supported by the National Natural Science Foundation of China(U20A20239)the Natural Science Foundation of Hubei Province(2020CFB692)the Scientific Research Fund of Hunan Provincial Education Department(18A428).
文摘In order to investigate the effect of the catalyst loading mode on the mechanical properties of Si_(3)N_(4) composite MgO-C refractories prepared by nitridation,fused magnesia,flake graphite,silicon powder,and phenolic resin were used as the main raw materials,and ferric nitrate as the catalyst to prepare refractories by nitriding at 1350℃.The effects of different catalyst supports(silicon powder,silicon powder+phenolic resin)on the formation of Si_(3)N_(4) in MgO-C refractories and the properties of refractories were studied.The results show that the silicon powder+resin catalyst support promotes the participation ofα-Si_(3)N_(4) in the reaction to generateβ-Si_(3)N_(4) and MgSiN_(2),and generates more SiC.However,this loading mode causes more gas to escape from the refractories and loosens the material structure,which reduces the mechanical properties.On the contrary,MgO-C refractories prepared by nitridation with silicon powder-supported catalysts under the same conditions show higher density and better mechanical properties.