In this study,the Surface Energy Balance Algorithms for Land(SEBAL) model and Moderate Resolution Imaging Spectroradiometer(MODIS) products from Terra satellite were combined with meteorological data to estimate evapo...In this study,the Surface Energy Balance Algorithms for Land(SEBAL) model and Moderate Resolution Imaging Spectroradiometer(MODIS) products from Terra satellite were combined with meteorological data to estimate evapotranspiration(ET) over the Sanjiang Plain,Northeast China.Land cover/land use was classified by using a recursive partitioning and regression tree with MODIS Normalized Difference Vegetation Index(NDVI) time series data,which were reconstructed based on the Savitzky-Golay filtering approach.The MODIS product Quality Assessment Science Data Sets(QA-SDS) was analyzed and all scenes with valid data covering more than 75% of the Sanjiang Plain were selected for the SEBAL modeling.This provided 12 overpasses during 184-day growing season from May 1st to October 31st,2006.Daily ET estimated by the SEBAL model was misestimaed at the range of-11.29% to 27.57% compared with that measured by Eddy Covariance system(10.52% on average).The validation results show that seasonal ET from the SEBAL model is comparable to that from ground observation within 8.86% of deviation.Our results reveal that the time series daily ET of different land cover/use increases from vegetation on-going until June or July and then decreases as vegetation senesced.Seasonal ET is lower in dry farmland(average(Ave):491 mm) and paddy field(Ave:522 mm) and increases in wetlands to more than 586 mm.As expected,higher seasonal ET values are observed for the Xingkai Lake in the southeastern part of the Sanjiang Plain(Ave:823 mm),broadleaf forest(Ave:666 mm) and mixed wood(Ave:622 mm) in the southern/western Sanjiang Plain.The ET estimation with SEBAL using MODIS products can provide decision support for operational water management issues.展开更多
Recent advances in remote sensing technology and methods have resulted in the development of an evapotranspiration(ET) product from the Moderate Resolution Imaging Spectrometer(MOD16). The accuracy of this product how...Recent advances in remote sensing technology and methods have resulted in the development of an evapotranspiration(ET) product from the Moderate Resolution Imaging Spectrometer(MOD16). The accuracy of this product however has not been tested for coastal wetland ecosystems. The objective of this study therefore is to validate the MOD16 ET product using data from one eddy covariance flux tower situated in the Panjin coastal wetland ecosystem within the Liaohe River Delta, Northeast China. Cumulative ET data over an eight-day period in 2005 from the flux tower was calculated to coincide with the MOD16 products across the same period. Results showed that data from the flux tower were inconsistent with that gained form the MOD16 ET. In general, results from Panjin showed that there was an underestimation of MOD16 ET in the spring and fall, with Biases of -2.27 and -3.53 mm/8 d, respectively(–40.58% and -49.13% of the observed mean). Results for Bias during the summer had a range of 1.77 mm/8 d(7.82% of the observed mean), indicating an overestimation of MOD16 ET. According to the RMSE, summer(6.14 mm/8 d) achieved the lowest value, indicating low accuracy of the MOD16 ET product. However, RMSE(2.09 mm/8 d) in spring was the same as that in the fall. Relationship between ET and its relevant meteorological parameters were analyzed. Results indicated a very good relationship between surface air temperature and ET. Meanwhile a significant relationship between wind speed and ET also existed. The inconsistent comparison of MOD16 and flux tower-based ET are mainly attributed to the parameterization of the Penman-Monteith model, flux tower measurement errors, and flux tower footprint vs. MODIS pixels.展开更多
Heat flux is important for studying interactions between atmosphere and lake.The heat exchange between air-water interfaces is one of the important ways to govern the temperature of the water surface.Heat exchange bet...Heat flux is important for studying interactions between atmosphere and lake.The heat exchange between air-water interfaces is one of the important ways to govern the temperature of the water surface.Heat exchange between the air-water interfaces and the surrounding environment is completed by solar radiation,conduction,and evaporation,and all these processes mainly occur at the air-water interface.Hulun Lake was the biggest lake which is also an important link and an indispensable part of the water cycle in Northeast China.This study mapped surface energy budget to better understand spatial and temporal variations in Hulun Lake in China from 2001 to 2018.Descriptive statistics were computed to build a historical time series of mean monthly heat flux at daytime and nighttime from June to September during 2001–2018.Remote sensing estimation methods we used was suitable for Hulun Lake(R2=0.81).At month scale,shortwave radiation and latent heat flux were decrease from June to September.However,the maximum sensible heat flux appeared in September.Net longwave radiation was the largest in August.The effective heat budget showed that Hulun Lake gained heat in the frost-free season with highest value in June(686.31 W/m2),and then steadily decreased to September(439.76 W/m2).At annual scale,net longwave radiation,sensible heat flux and latent heat flux all show significant growth trend from 2001 to 2018(P<0.01).Wind speed had the well correlation on sensible heat flux and latent heat flux.Water surface temperature showed the highest coefficient in sensitivity analysis.展开更多
基金Under the auspices of National Basic Research Program of China (No. 2010CB951304-5)National Natural Science Foundation of China (No. 41101545,41030743)
文摘In this study,the Surface Energy Balance Algorithms for Land(SEBAL) model and Moderate Resolution Imaging Spectroradiometer(MODIS) products from Terra satellite were combined with meteorological data to estimate evapotranspiration(ET) over the Sanjiang Plain,Northeast China.Land cover/land use was classified by using a recursive partitioning and regression tree with MODIS Normalized Difference Vegetation Index(NDVI) time series data,which were reconstructed based on the Savitzky-Golay filtering approach.The MODIS product Quality Assessment Science Data Sets(QA-SDS) was analyzed and all scenes with valid data covering more than 75% of the Sanjiang Plain were selected for the SEBAL modeling.This provided 12 overpasses during 184-day growing season from May 1st to October 31st,2006.Daily ET estimated by the SEBAL model was misestimaed at the range of-11.29% to 27.57% compared with that measured by Eddy Covariance system(10.52% on average).The validation results show that seasonal ET from the SEBAL model is comparable to that from ground observation within 8.86% of deviation.Our results reveal that the time series daily ET of different land cover/use increases from vegetation on-going until June or July and then decreases as vegetation senesced.Seasonal ET is lower in dry farmland(average(Ave):491 mm) and paddy field(Ave:522 mm) and increases in wetlands to more than 586 mm.As expected,higher seasonal ET values are observed for the Xingkai Lake in the southeastern part of the Sanjiang Plain(Ave:823 mm),broadleaf forest(Ave:666 mm) and mixed wood(Ave:622 mm) in the southern/western Sanjiang Plain.The ET estimation with SEBAL using MODIS products can provide decision support for operational water management issues.
基金Under the auspices of National Key R&D Program of China(No.2016YFA0602301-1)National Key Research Project(No.2013CB430401)
文摘Recent advances in remote sensing technology and methods have resulted in the development of an evapotranspiration(ET) product from the Moderate Resolution Imaging Spectrometer(MOD16). The accuracy of this product however has not been tested for coastal wetland ecosystems. The objective of this study therefore is to validate the MOD16 ET product using data from one eddy covariance flux tower situated in the Panjin coastal wetland ecosystem within the Liaohe River Delta, Northeast China. Cumulative ET data over an eight-day period in 2005 from the flux tower was calculated to coincide with the MOD16 products across the same period. Results showed that data from the flux tower were inconsistent with that gained form the MOD16 ET. In general, results from Panjin showed that there was an underestimation of MOD16 ET in the spring and fall, with Biases of -2.27 and -3.53 mm/8 d, respectively(–40.58% and -49.13% of the observed mean). Results for Bias during the summer had a range of 1.77 mm/8 d(7.82% of the observed mean), indicating an overestimation of MOD16 ET. According to the RMSE, summer(6.14 mm/8 d) achieved the lowest value, indicating low accuracy of the MOD16 ET product. However, RMSE(2.09 mm/8 d) in spring was the same as that in the fall. Relationship between ET and its relevant meteorological parameters were analyzed. Results indicated a very good relationship between surface air temperature and ET. Meanwhile a significant relationship between wind speed and ET also existed. The inconsistent comparison of MOD16 and flux tower-based ET are mainly attributed to the parameterization of the Penman-Monteith model, flux tower measurement errors, and flux tower footprint vs. MODIS pixels.
基金Under the auspices of National Key Research and Development Program of China(No.2016YFA0602301,2016YFB0501502)Strategic Planning Project of the Northeast Institute of Geography and Agroecology(IGA),Chinese Academy of Sciences(No.Y6H2091001)National Forestry Science and Technology Demonstration Promotion Project(No.JLT2018-03)。
文摘Heat flux is important for studying interactions between atmosphere and lake.The heat exchange between air-water interfaces is one of the important ways to govern the temperature of the water surface.Heat exchange between the air-water interfaces and the surrounding environment is completed by solar radiation,conduction,and evaporation,and all these processes mainly occur at the air-water interface.Hulun Lake was the biggest lake which is also an important link and an indispensable part of the water cycle in Northeast China.This study mapped surface energy budget to better understand spatial and temporal variations in Hulun Lake in China from 2001 to 2018.Descriptive statistics were computed to build a historical time series of mean monthly heat flux at daytime and nighttime from June to September during 2001–2018.Remote sensing estimation methods we used was suitable for Hulun Lake(R2=0.81).At month scale,shortwave radiation and latent heat flux were decrease from June to September.However,the maximum sensible heat flux appeared in September.Net longwave radiation was the largest in August.The effective heat budget showed that Hulun Lake gained heat in the frost-free season with highest value in June(686.31 W/m2),and then steadily decreased to September(439.76 W/m2).At annual scale,net longwave radiation,sensible heat flux and latent heat flux all show significant growth trend from 2001 to 2018(P<0.01).Wind speed had the well correlation on sensible heat flux and latent heat flux.Water surface temperature showed the highest coefficient in sensitivity analysis.