Soil behavior can reflect the characteristics of principal stress rotation under dynamic wave and traffic loads. Unequal amplitudes of tensile and compressive stresses applied to soils have complex effects on foundati...Soil behavior can reflect the characteristics of principal stress rotation under dynamic wave and traffic loads. Unequal amplitudes of tensile and compressive stresses applied to soils have complex effects on foundation soils in comparison with the pure principal stress rotation path. A series of undrained cyclic hollow torsional shear tests were performed on typical remolded soft clay from the Hexi area of Nanjing, China. The main control parameters were the tensile and compressive stress amplitude ratio(α) and the cyclic dynamic stress ratio(η). It was found that the critical η tended to remain constant at 0.13, when the value of the compressive stress amplitude was higher than the tensile stress amplitude. However, the influence of the tensile stress was limited by the dynamic stress level when α= 1.For obvious structural change in the soil, the corresponding numbers of cyclic vibration cycles were found to be independent of α at low stress levels and were only related to η. Finally, a new method for evaluating the failure of remolded soft clay was presented. It considers the influence of the tensile and compressive stresses which caused by complex stress paths of the principal stress rotation. This criterion can distinguish stable, critical, and destructive states based on the pore-water-pressure-strain coupling curve while also providing a range of failure strain and vibration cycles. These results provide the theoretical support for systematic studies of principal stress rotation using constitutive models.展开更多
The doping content of Mg plays an important role in the crystalline structure and morphology properties of Zn_(1-x )Mg_xO thin films. Here,using radio-frequency magnetron sputtering method,we prepared Zn_(1-x )Mg_xO t...The doping content of Mg plays an important role in the crystalline structure and morphology properties of Zn_(1-x )Mg_xO thin films. Here,using radio-frequency magnetron sputtering method,we prepared Zn_(1-x )Mg_xO thin films on single crystalline Si(100) substrates with a series of x values. By means of X-ray diffraction(XRD) and scanning electron microscope(SEM),the crystalline structure and morphology of Zn_(1-x )Mg_xO thin films with different x values are investigated. The crystalline structure of Zn_(1-x )Mg_xO thin film is single phase with x<0.3,while there is phase separation phenomenon with x>0.3,and hexagonal and cubic structures will coexist in Zn_(1-x )Mg_xO thin films with higher x values. Especially with lower x values,a shoulder peak of 35.1° appearing in the XRD pattern indicates a double-crystalline structure of Zn_(1-x )Mg_xO thin film. The crystalline quality has been improved and the inner stress has been released,after the Zn_(1-x )Mg_xO thin films were annealed at 600 °C in vacuum condition.展开更多
基金financial support of the National Natural Science Foundation of China(51420105013 and 51479060)Fundamental Research Funds for the Central Universities(2015B17114)Science and Technology Project of Shandong Housing and Urban-Rural Development(2014QG009)
文摘Soil behavior can reflect the characteristics of principal stress rotation under dynamic wave and traffic loads. Unequal amplitudes of tensile and compressive stresses applied to soils have complex effects on foundation soils in comparison with the pure principal stress rotation path. A series of undrained cyclic hollow torsional shear tests were performed on typical remolded soft clay from the Hexi area of Nanjing, China. The main control parameters were the tensile and compressive stress amplitude ratio(α) and the cyclic dynamic stress ratio(η). It was found that the critical η tended to remain constant at 0.13, when the value of the compressive stress amplitude was higher than the tensile stress amplitude. However, the influence of the tensile stress was limited by the dynamic stress level when α= 1.For obvious structural change in the soil, the corresponding numbers of cyclic vibration cycles were found to be independent of α at low stress levels and were only related to η. Finally, a new method for evaluating the failure of remolded soft clay was presented. It considers the influence of the tensile and compressive stresses which caused by complex stress paths of the principal stress rotation. This criterion can distinguish stable, critical, and destructive states based on the pore-water-pressure-strain coupling curve while also providing a range of failure strain and vibration cycles. These results provide the theoretical support for systematic studies of principal stress rotation using constitutive models.
基金supported by the National Natural Science Foundation of China(Nos.20473077 and 61540071)the Project of Natural Science Research of High Education in Jiangsu Province(No.15KJD140002)+2 种基金the Fundamental Research Funds of Changzhou Science and Technology Bureau(No.CJ20160026)the Changzhou Modern Optoelectronic Technology Research Institute Funds(No.CZGY13)the Natural Science Funds of Changzhou Institute of Technology(No.YN1408)
文摘The doping content of Mg plays an important role in the crystalline structure and morphology properties of Zn_(1-x )Mg_xO thin films. Here,using radio-frequency magnetron sputtering method,we prepared Zn_(1-x )Mg_xO thin films on single crystalline Si(100) substrates with a series of x values. By means of X-ray diffraction(XRD) and scanning electron microscope(SEM),the crystalline structure and morphology of Zn_(1-x )Mg_xO thin films with different x values are investigated. The crystalline structure of Zn_(1-x )Mg_xO thin film is single phase with x<0.3,while there is phase separation phenomenon with x>0.3,and hexagonal and cubic structures will coexist in Zn_(1-x )Mg_xO thin films with higher x values. Especially with lower x values,a shoulder peak of 35.1° appearing in the XRD pattern indicates a double-crystalline structure of Zn_(1-x )Mg_xO thin film. The crystalline quality has been improved and the inner stress has been released,after the Zn_(1-x )Mg_xO thin films were annealed at 600 °C in vacuum condition.