期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Self-supervised learning-based oil spill detection of hyperspectral images 被引量:3
1
作者 duan puhong XIE ZhuoJun +1 位作者 KANG XuDong LI ShuTao 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第4期793-801,共9页
Oil spill monitoring in remote sensing field has become a very popular technology to detect the spatial distribution of polluted regions.However,previous studies mainly focus on the supervised detection technologies,w... Oil spill monitoring in remote sensing field has become a very popular technology to detect the spatial distribution of polluted regions.However,previous studies mainly focus on the supervised detection technologies,which requires a large number of high-quality training set.To solve this problem,we propose a self-supervised learning method to learn the deep neural network from unlabelled hyperspectral data for oil spill detection,which consists of three parts:data augmentation,unsupervised deep feature learning,and oil spill detection network.First,the original image is augmented with spectral and spatial transformation to improve robustness of the self-supervised model.Then,the deep neural networks are trained on the augmented data without label information to produce the high-level semantic features.Finally,the pre-trained parameters are transferred to establish a neural network classifier to obtain the detection result,where a contrastive loss is developed to fine-tune the learned parameters so as to improve the generalization ability of the proposed method.Experiments performed on ten oil spill datasets reveal that the proposed method obtains promising detection performance with respect to other state-of-the-art hyperspectral detection approaches. 展开更多
关键词 hyperspectral image self-supervised learning data augmentation oil spill detection contrastive loss
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部