期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
海洋声学信息感知实验室海洋声学实验与人才培养 被引量:4
1
作者 李辉 杨坤德 +1 位作者 段顺利 杨秋龙 《实验技术与管理》 CAS 北大核心 2021年第1期17-20,共4页
海洋是我国经济社会发展的重要战略空间。该文在海洋强国战略背景下探讨国防发展对深远海领域的建设需求,以海洋声学信息感知重点实验室建设为例,结合多次海洋声学海上实验实践,从实验室构架、海上实验组织管理和学生培养等维度,探讨高... 海洋是我国经济社会发展的重要战略空间。该文在海洋强国战略背景下探讨国防发展对深远海领域的建设需求,以海洋声学信息感知重点实验室建设为例,结合多次海洋声学海上实验实践,从实验室构架、海上实验组织管理和学生培养等维度,探讨高校实验室在科技创新及人才培养中发挥的重要作用。通过近5年的建设,实验室定位明确,发展思路不断拓宽,在高校"双一流"建设中发挥了积极作用。 展开更多
关键词 海洋声学 信息感知 实验室建设
下载PDF
Underwater Noise Target Recognition Based on Sparse Adversarial Co-Training Model with Vertical Line Array
2
作者 ZHOU Xingyue YANG Kunde +2 位作者 YAN Yonghong LI Zipeng duan shunli 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第5期1201-1215,共15页
The automatic identification of underwater noncooperative targets without label records remains an arduous task considering the marine noise interference and the shortage of labeled samples.In particular,the data-driv... The automatic identification of underwater noncooperative targets without label records remains an arduous task considering the marine noise interference and the shortage of labeled samples.In particular,the data-driven mechanism of deep learning cannot identify false samples,aggravating the difficulty in noncooperative underwater target recognition.A semi-supervised ensemble framework based on vertical line array fusion and the sparse adversarial co-training algorithm is proposed to identify noncooperative targets effectively.The sound field cross-correlation compression(SCC)feature is developed to reduce noise and computational redundancy.Starting from an incomplete dataset,a joint adversarial autoencoder is constructed to extract the sparse features with source depth sensitivity,aiming to discover the unknown underwater targets.The adversarial prediction label is converted to initialize the joint co-forest,whose evaluation function is optimized by introducing adaptive confidence.The experiments prove the strong denoising performance,low mean square error,and high separability of SCC features.Compared with several state-of-the-art approaches,the numerical results illustrate the superiorities of the proposed method due to feature compression,secondary recognition,and decision fusion. 展开更多
关键词 underwater acoustic target recognition marine acoustic signal processing sound field feature extraction sparse adversarial network
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部