Tartary buckwheat(Fagopyrum tataricum)is a well-known pseudocereal for its health and economic value.However,abundant antinutritional factors(ANFs)reduces its health benefits.As reported,germination can improve the nu...Tartary buckwheat(Fagopyrum tataricum)is a well-known pseudocereal for its health and economic value.However,abundant antinutritional factors(ANFs)reduces its health benefits.As reported,germination can improve the nutritional profile of grains.In this study,we systematically evaluate the safety of Tartary buckwheat seeds(TB)and Tartary buckwheat sprouts(TBS)used as high active ingredients.After evaluating nutrition levels,bioactive compounds and ANFs in TBS during germinating,5^(th)-day TBS were selected as the raw material.C57BL/6J mice were gavaged daily with distilled water,TB,or TBS for 6 weeks.The physiological indices related to ANFs were determined.Results showed that the TB intake tends to generate negative effects on the gut microbiota,and organs.Additionally,upon TB intake,the Fe^(3+)content in serum,trypsin activity in pancreas and jejunum decreased,while the cytokine,IgE,and histamine levels in serum,water content in faeces,cytokine levels in liver and jejunum increased.Conversely,TBS did not induce any obvious negative effects on the above relevant indices and showed better lipid-lowering effect.Altogether,TBS are safer and more effective as a raw material to produce the functional food for long-term consumption with the intention of preventing and treating hyperlipidaemia.展开更多
Aluminum (Al) toxicity is a considerable factor limiting crop yield and biomass in acidic soil. Tartary buckwheatgrowing in acidic soil may suffer from Al poisoning. Here, we investigated the influence of Al stress on...Aluminum (Al) toxicity is a considerable factor limiting crop yield and biomass in acidic soil. Tartary buckwheatgrowing in acidic soil may suffer from Al poisoning. Here, we investigated the influence of Al stress on the growthof tartary buckwheat seedling roots, and the alleviation of Al stress by silicon (Si), as has been demonstrated inmany crops. Under Al stress, root growth (total root length, primary root length, root tips, root surface area, androot volume) was significantly inhibited, and Al and malondialdehyde (MDA) accumulated in the root tips. At thesame time, catalase (CAT) and ascorbate peroxidase activities, polyphenols, flavonoids, and 1,1-diphenyl-2-picrylhydrazyl(DPPH) and 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) free-radical scavenging abilitywere significantly decreased. After the application of Si, root growth, Al accumulation, and oxidative damage wereimproved. Compared to Al-treated seedlings, the contents of ·O2− and MDA decreased by 29.39% and 25.22%,respectively. This was associated with Si-induced increases in peroxidase and CAT enzyme activity, flavonoidcompounds, and free-radical scavenging (DPPH and ABTS). The application of Si therefore has positive effectson Al toxicity in tartary buckwheat roots by reducing Al accumulation in the roots and maintaining oxidationhomeostasis.展开更多
To mitigate the wastage of seed resources and reduce the usage of pesticides and fertilizers, seed coating agentshave gained popularity. This study employs single-factor and multi-index orthogonal experimental design ...To mitigate the wastage of seed resources and reduce the usage of pesticides and fertilizers, seed coating agentshave gained popularity. This study employs single-factor and multi-index orthogonal experimental design methodsto investigate the seed coating formula and physical properties of Tartary buckwheat. The specific effects ofeach component on Tartary buckwheat seed germination are analyzed. The findings reveal that the seed coatingagent formulated with 1.5% polyvinyl alcohol, 0.15% sodium alginate, 0.2% op-10, 0.1% polyacrylamide, 8% colorant,3% ammonium sulfate, 1% potassium dihydrogen phosphate, and 0.15% carbendazim exhibits the mosteffective coating. It demonstrates optimal physical properties and promotes seed germination efficiently. The suspensionrate of this seed coating agent reaches 91.12%, with a mere 2.13% coating shedding rate and 2.5% coatingseed rot rate. Furthermore, it achieves a germination percentage of 99.17%, which is 20.84% higher than the lowestgroup. The germination potential and index are also significantly higher than the lowest group, with anincrease of 20.84% and 26.56%, respectively. Additionally, the vitality index is 553.08, a 15.75% increase comparedto the lowest group. The application of seed coating agents helps reduce seed resource loss, increase plant numbers,and ultimately enhance agricultural yields. This finding holds practical significance in agriculturalproduction.展开更多
A low seed-setting rate is the main limiting factor influencing Tartary buckwheat production under high-yield cultivation conditions.To investigate the seed setting and its spatial characteristics,two Tartary buckwhea...A low seed-setting rate is the main limiting factor influencing Tartary buckwheat production under high-yield cultivation conditions.To investigate the seed setting and its spatial characteristics,two Tartary buckwheat cultivars(high seed-setting rate cultivar Qianku 3;low seed-setting rate cultivar Liuku 3)were compared by a two-year field trial in 2017 and 2018.The results showed that the Tartary buckwheat underwent simultaneous flowering and fruiting.Flowers,generated from branch,were still blooming during the mature stage of grains on stem,which resulting in a greater number of flowers and grains on the branch than those on the stem at the low part of plant.The seed-setting characteristics significantly differed between two cultivars.The high seed-setting rate of Qianku 3 was 26.6%and 33.2%higher than Liuku 3 in 2017 and 2018,respectively.Meanwhile,Qianku 3 showed a higher filled grain number(157.8%)and seed-setting rate(66.4%)on branch than Liuku 3.A network analysis showed that the whole-plant seed-setting rate was positively correlated with grain number,which was closely correlated with flower number at the same position of plant.The path-coefficient analysis revealed that grains number on branches was the most dominant component(Path coefficient(P)=2.19)of the seed-setting rate,followed by grains number on stem(P=0.60).The grains number on branches showed the greatest positive direct effect with significant correlation(r=0.76 and P<0.01)on the seed-setting rate.Overall,the present study indicated that the grain number of branches may play a vital role in improving the seed-setting rate in Tartary buckwheat.展开更多
Rice-Tartary buckwheat(RTB)is a special germplasm of Tartary buckwheat.In this study,the appraisal of taste quality between RTB and conventional Tartary buckwheat(CTB)was presented,and the metabolites in kernels at th...Rice-Tartary buckwheat(RTB)is a special germplasm of Tartary buckwheat.In this study,the appraisal of taste quality between RTB and conventional Tartary buckwheat(CTB)was presented,and the metabolites in kernels at three typical grain filling stage(GFS)were investigated.Unlike CTB,RTB showed thin shell seeds without longitudinal furrows at maturity,which was easily artificially dehulled.Sense organ test indicated that RTB exhibited better taste quality because of the higher values of appearance,viscosity,taste and summary were appraised.In total,92 metabolites were identified in kernels using GM-MS metabolomics platform.The levels of most metabolites changed greatly during grain filling and a large numbers of metabolite-metabolite correlations were found by Pearson correlation coefficient analysis.ANOVA analysis identified 61 differentially expressed metabolites between RTB and CTB,while Venn diagram analysis screened 35 common differential metabolites.Compared with CTB,RTB showed similar levels of lysine and methionine,indicated that RTB own excellent nutritional value.Additionally,RTB exhibited significantly up-regulated levels of most sweeteners(sugars and polyols),which might contribute to better taste.This work provides the first comprehensive metabolomics analysis of kernels between RTB and CTB,which may potentially provide theoretical basis for further research.展开更多
Tartary buckwheat(Fagopyrum tataricum)is an important pseudocereal feed crop with medicinal and nutritional value.Drought is one of the main causes of reduced growth and yield in these plants.We investigated the growt...Tartary buckwheat(Fagopyrum tataricum)is an important pseudocereal feed crop with medicinal and nutritional value.Drought is one of the main causes of reduced growth and yield in these plants.We investigated the growth,physiological,and metabolic responses of the widely promoted Tartary buckwheat variety Chuan Qiao No.1 to polyethylene glycol(PEG)-mediated drought stress.Drought significantly decreased shoot length,shoot biomass and relative water content.Root length,malondialdehyde content,electrolyte leakage,activities of superoxide dismutase,peroxidase,catalase and amylase,and contents of soluble sugar,soluble protein and proline were increased by PEG-mediated drought.Untargeted metabolomics analysis identified 32 core metabolites in seedlings subjected to PEG-mediated drought,16 of which increased—including quercetin,isovitexin,cyanidin 3-O-beta-D-glucoside,L-arginine,and glycerophosphocholine,while the other 16 decreased—including 3-methoxytyramine,2,6-diaminopimelic acid,citric acid,UDP-alpha-D-glucose,adenosine,keto-D-fructose.The 32 core metabolites were enriched in 29 metabolic pathways,including lysine biosynthesis,citrate(TCA)cycle,anthocyanin biosynthesis,and aminoacyl-tRNA biosynthesis.Among them,taurine and hypotaurine metabolism,flavor and flavor biosynthesis,indole alkaline biosynthesis,and alanine,aspartate and glutamate metabolism were the four main metabolic pathways affected by drought.Our findings provide new insights into the physiological and metabolic response mechanisms of Tartary buckwheat to drought stress.展开更多
Drought can limit the growth and reduce the yield of crops,but the safe and effective bio-approach to improve the drought resistance of crops is very little.We conducted an experiment in which we monitored the effects...Drought can limit the growth and reduce the yield of crops,but the safe and effective bio-approach to improve the drought resistance of crops is very little.We conducted an experiment in which we monitored the effects of polysaccharide from the endophyte Bionectria sp.Fat6 on the growth of Tartary buckwheat(Fagopyrum tataricum(L.)Gaertn)seedlings under control and drought-stressed conditions by determining gas exchange,photosynthesis parameters,photosynthetic pigment contents,and metabolite accumulation.Results indicated that the polysaccharide from endophyte stimulated plant growth and increased the aboveground biomass,root mass,and root/shoot ratio of Tartary buckwheat.Application of the polysaccharide to drought-stressed plants resulted in a significant increase in the net photosynthetic rate,stomatal conductance,and transpiration rate of Tartary buckwheat and decreased the intercellular CO_(2) concentration.The contents of chlorophyll a,chlorophyll b,chlorophyll a+b,and carotenoids in leaves were higher in polysaccharide-treated seedlings than that in control.Polysaccharide notably increased the soluble protein and proline content and decreased the malondialdehyde content in Tartary buckwheat leaves.The endophytic polysaccharide may protect Tartary buckwheat against drought by improving leaf gas exchange and photosynthetic capacity,and altering concentrations of protective metabolites.Together,these changes may compensate for the negative impacts of drought stress on the growth of Tartary buckwheat.Thus,the polysaccharide from the endophyte Bionectria sp.Fat6 may be an effective biotic elicitor and a promising bio-approach to improve Tartary buckwheat production worldwide.展开更多
Under the background of emerging agricultural education,practice bases are an important place to train profession talented person that match social needs,so it is very important to build stable and long-term practice ...Under the background of emerging agricultural education,practice bases are an important place to train profession talented person that match social needs,so it is very important to build stable and long-term practice bases.At present,the main problems in the construction of practice bases for postgraduates in local colleges and universities are mainly focusing on construction and neglecting management,imperfect cooperation mechanism and lack of teaching management effectively.It is of great significance to build a long-term management mechanism to ensure the education quality of practice bases.Therefore,constructing the mode of"double integration and double promotion of production and education"with practice bases as the carrier and realizing the organic combination of industrial needs and postgraduate projects is an important idea for local colleges and universities to train professional degree postgraduates to"know agriculture,love agriculture,strengthen agriculture and promote agriculture",and it also provides a reference for the mechanism construction of postgraduate bases.展开更多
Heavy truck tires are one of ihe rnam sources of road traffic noise. However, the mecha- nism and plopagation of the noise generated by these tires have not been systematically investigated 7o determine the noise of h...Heavy truck tires are one of ihe rnam sources of road traffic noise. However, the mecha- nism and plopagation of the noise generated by these tires have not been systematically investigated 7o determine the noise of heavy truck tires with different structures and patterns, and to analyze the coraelation between the indoor tire noise and coast-by tire noise, an integrated tire indoor noise test and a coast-by noise test were designed and successfully implemented. The indoor test was conducted on a drum inside a semi- anechoic chamber to simultaneously measure the near field and far field noise of the tires. The outdoor measurements were carried out using a coast-by test on the new ISO 10844 surface. A formula for quantitative analysis with appropriate corrections was developed to analyze the data with reasonable errors, which can be used to predict the coast-by noise through the indool tire noise test accurately and effectively. The analysis shows that when trying to build the relationship between indoor and outdoor heavy truck tire noise, care should be taken to differentiate the tires with a load capacity index in excess of 121 and without any dual fitting indication from ordinary tires, due to the specified test procedure.展开更多
基金Supported by the Opening Project of Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural AffairsSichuan Engineering and Technology Research Center of Coarse Cereal Industralization,Chengdu University(2022CC013)。
文摘Tartary buckwheat(Fagopyrum tataricum)is a well-known pseudocereal for its health and economic value.However,abundant antinutritional factors(ANFs)reduces its health benefits.As reported,germination can improve the nutritional profile of grains.In this study,we systematically evaluate the safety of Tartary buckwheat seeds(TB)and Tartary buckwheat sprouts(TBS)used as high active ingredients.After evaluating nutrition levels,bioactive compounds and ANFs in TBS during germinating,5^(th)-day TBS were selected as the raw material.C57BL/6J mice were gavaged daily with distilled water,TB,or TBS for 6 weeks.The physiological indices related to ANFs were determined.Results showed that the TB intake tends to generate negative effects on the gut microbiota,and organs.Additionally,upon TB intake,the Fe^(3+)content in serum,trypsin activity in pancreas and jejunum decreased,while the cytokine,IgE,and histamine levels in serum,water content in faeces,cytokine levels in liver and jejunum increased.Conversely,TBS did not induce any obvious negative effects on the above relevant indices and showed better lipid-lowering effect.Altogether,TBS are safer and more effective as a raw material to produce the functional food for long-term consumption with the intention of preventing and treating hyperlipidaemia.
基金Science&Technology Department of Sichuan Province(2022YFQ0041,2022NSFSC1725,2023NSFSC0214)China Agriculture Research System(CARS-07-B-1)+2 种基金The National Natural Science Foundation of China(32160428)Innovative Training Program for College Students(202311079040,S202311079112,CDUCX2023550)Undergraduate Education and Teaching Reform Project of Chengdu University(cdjgb2022186).
文摘Aluminum (Al) toxicity is a considerable factor limiting crop yield and biomass in acidic soil. Tartary buckwheatgrowing in acidic soil may suffer from Al poisoning. Here, we investigated the influence of Al stress on the growthof tartary buckwheat seedling roots, and the alleviation of Al stress by silicon (Si), as has been demonstrated inmany crops. Under Al stress, root growth (total root length, primary root length, root tips, root surface area, androot volume) was significantly inhibited, and Al and malondialdehyde (MDA) accumulated in the root tips. At thesame time, catalase (CAT) and ascorbate peroxidase activities, polyphenols, flavonoids, and 1,1-diphenyl-2-picrylhydrazyl(DPPH) and 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) free-radical scavenging abilitywere significantly decreased. After the application of Si, root growth, Al accumulation, and oxidative damage wereimproved. Compared to Al-treated seedlings, the contents of ·O2− and MDA decreased by 29.39% and 25.22%,respectively. This was associated with Si-induced increases in peroxidase and CAT enzyme activity, flavonoidcompounds, and free-radical scavenging (DPPH and ABTS). The application of Si therefore has positive effectson Al toxicity in tartary buckwheat roots by reducing Al accumulation in the roots and maintaining oxidationhomeostasis.
基金the Sichuan Science and Technology Program(2023NSFSC0214)China Agriculture Research System(CARS-07-B-1)+1 种基金National Natural Sciences Foundation of China(Nos.3230185031771716).
文摘To mitigate the wastage of seed resources and reduce the usage of pesticides and fertilizers, seed coating agentshave gained popularity. This study employs single-factor and multi-index orthogonal experimental design methodsto investigate the seed coating formula and physical properties of Tartary buckwheat. The specific effects ofeach component on Tartary buckwheat seed germination are analyzed. The findings reveal that the seed coatingagent formulated with 1.5% polyvinyl alcohol, 0.15% sodium alginate, 0.2% op-10, 0.1% polyacrylamide, 8% colorant,3% ammonium sulfate, 1% potassium dihydrogen phosphate, and 0.15% carbendazim exhibits the mosteffective coating. It demonstrates optimal physical properties and promotes seed germination efficiently. The suspensionrate of this seed coating agent reaches 91.12%, with a mere 2.13% coating shedding rate and 2.5% coatingseed rot rate. Furthermore, it achieves a germination percentage of 99.17%, which is 20.84% higher than the lowestgroup. The germination potential and index are also significantly higher than the lowest group, with anincrease of 20.84% and 26.56%, respectively. Additionally, the vitality index is 553.08, a 15.75% increase comparedto the lowest group. The application of seed coating agents helps reduce seed resource loss, increase plant numbers,and ultimately enhance agricultural yields. This finding holds practical significance in agriculturalproduction.
基金the National Natural Science Foundation of China(31771716)China Agriculture Research System(CARS-07-B-1)to facilitate the research.
文摘A low seed-setting rate is the main limiting factor influencing Tartary buckwheat production under high-yield cultivation conditions.To investigate the seed setting and its spatial characteristics,two Tartary buckwheat cultivars(high seed-setting rate cultivar Qianku 3;low seed-setting rate cultivar Liuku 3)were compared by a two-year field trial in 2017 and 2018.The results showed that the Tartary buckwheat underwent simultaneous flowering and fruiting.Flowers,generated from branch,were still blooming during the mature stage of grains on stem,which resulting in a greater number of flowers and grains on the branch than those on the stem at the low part of plant.The seed-setting characteristics significantly differed between two cultivars.The high seed-setting rate of Qianku 3 was 26.6%and 33.2%higher than Liuku 3 in 2017 and 2018,respectively.Meanwhile,Qianku 3 showed a higher filled grain number(157.8%)and seed-setting rate(66.4%)on branch than Liuku 3.A network analysis showed that the whole-plant seed-setting rate was positively correlated with grain number,which was closely correlated with flower number at the same position of plant.The path-coefficient analysis revealed that grains number on branches was the most dominant component(Path coefficient(P)=2.19)of the seed-setting rate,followed by grains number on stem(P=0.60).The grains number on branches showed the greatest positive direct effect with significant correlation(r=0.76 and P<0.01)on the seed-setting rate.Overall,the present study indicated that the grain number of branches may play a vital role in improving the seed-setting rate in Tartary buckwheat.
基金This research was funded in part by the National Natural Science Foundation of China(Grant Nos.31660366,31660424)Natural Science Foundation of Guizhou Province(QKH ZC[2019]2298,QKH CG[2019]4336)+1 种基金the construction of the Key Laboratory for Conservation and Innovation of Buckwheat Germplasm in Guizhou(QJH KY Zi[2017]002)Doctor Research Fund in Guizhou Normal University.
文摘Rice-Tartary buckwheat(RTB)is a special germplasm of Tartary buckwheat.In this study,the appraisal of taste quality between RTB and conventional Tartary buckwheat(CTB)was presented,and the metabolites in kernels at three typical grain filling stage(GFS)were investigated.Unlike CTB,RTB showed thin shell seeds without longitudinal furrows at maturity,which was easily artificially dehulled.Sense organ test indicated that RTB exhibited better taste quality because of the higher values of appearance,viscosity,taste and summary were appraised.In total,92 metabolites were identified in kernels using GM-MS metabolomics platform.The levels of most metabolites changed greatly during grain filling and a large numbers of metabolite-metabolite correlations were found by Pearson correlation coefficient analysis.ANOVA analysis identified 61 differentially expressed metabolites between RTB and CTB,while Venn diagram analysis screened 35 common differential metabolites.Compared with CTB,RTB showed similar levels of lysine and methionine,indicated that RTB own excellent nutritional value.Additionally,RTB exhibited significantly up-regulated levels of most sweeteners(sugars and polyols),which might contribute to better taste.This work provides the first comprehensive metabolomics analysis of kernels between RTB and CTB,which may potentially provide theoretical basis for further research.
基金We acknowledge the Project of National Key Research and Development Program of China(2020YFD1001403)China Agriculture Research System(CARS-07-B-1)+3 种基金Science&Technology Department of Sichuan Province(2022YFQ0041)the National Natural Science Foundation of China(31601260,32160428)Innovative Training Program for College Students(S202111079058)Special Research Fund from Key Laboratory of Coarse Cereal Processing,Ministry of Agriculture and Rural Affairs(2020CC012)to facilitate the research.
文摘Tartary buckwheat(Fagopyrum tataricum)is an important pseudocereal feed crop with medicinal and nutritional value.Drought is one of the main causes of reduced growth and yield in these plants.We investigated the growth,physiological,and metabolic responses of the widely promoted Tartary buckwheat variety Chuan Qiao No.1 to polyethylene glycol(PEG)-mediated drought stress.Drought significantly decreased shoot length,shoot biomass and relative water content.Root length,malondialdehyde content,electrolyte leakage,activities of superoxide dismutase,peroxidase,catalase and amylase,and contents of soluble sugar,soluble protein and proline were increased by PEG-mediated drought.Untargeted metabolomics analysis identified 32 core metabolites in seedlings subjected to PEG-mediated drought,16 of which increased—including quercetin,isovitexin,cyanidin 3-O-beta-D-glucoside,L-arginine,and glycerophosphocholine,while the other 16 decreased—including 3-methoxytyramine,2,6-diaminopimelic acid,citric acid,UDP-alpha-D-glucose,adenosine,keto-D-fructose.The 32 core metabolites were enriched in 29 metabolic pathways,including lysine biosynthesis,citrate(TCA)cycle,anthocyanin biosynthesis,and aminoacyl-tRNA biosynthesis.Among them,taurine and hypotaurine metabolism,flavor and flavor biosynthesis,indole alkaline biosynthesis,and alanine,aspartate and glutamate metabolism were the four main metabolic pathways affected by drought.Our findings provide new insights into the physiological and metabolic response mechanisms of Tartary buckwheat to drought stress.
基金This work was funded by National Key R&D Program of China(Grant No.2019YFD1001302/2019YFD1001300)Supported by National Natural Science Foundation of China(31771716+2 种基金3160126031701358)the earmarked fund for China Agriculture Research System(CARS-07-02A).
文摘Drought can limit the growth and reduce the yield of crops,but the safe and effective bio-approach to improve the drought resistance of crops is very little.We conducted an experiment in which we monitored the effects of polysaccharide from the endophyte Bionectria sp.Fat6 on the growth of Tartary buckwheat(Fagopyrum tataricum(L.)Gaertn)seedlings under control and drought-stressed conditions by determining gas exchange,photosynthesis parameters,photosynthetic pigment contents,and metabolite accumulation.Results indicated that the polysaccharide from endophyte stimulated plant growth and increased the aboveground biomass,root mass,and root/shoot ratio of Tartary buckwheat.Application of the polysaccharide to drought-stressed plants resulted in a significant increase in the net photosynthetic rate,stomatal conductance,and transpiration rate of Tartary buckwheat and decreased the intercellular CO_(2) concentration.The contents of chlorophyll a,chlorophyll b,chlorophyll a+b,and carotenoids in leaves were higher in polysaccharide-treated seedlings than that in control.Polysaccharide notably increased the soluble protein and proline content and decreased the malondialdehyde content in Tartary buckwheat leaves.The endophytic polysaccharide may protect Tartary buckwheat against drought by improving leaf gas exchange and photosynthetic capacity,and altering concentrations of protective metabolites.Together,these changes may compensate for the negative impacts of drought stress on the growth of Tartary buckwheat.Thus,the polysaccharide from the endophyte Bionectria sp.Fat6 may be an effective biotic elicitor and a promising bio-approach to improve Tartary buckwheat production worldwide.
基金Supported by 2021-2023 Postgraduate Talent Training Quality and Teaching Reform Project of Chengdu University (cdjgy2022035)2021-2023 Higher Education Talent Training Quality and Teaching Reform Project of Sichuan Province (JG2021-1109JG2021-130).
文摘Under the background of emerging agricultural education,practice bases are an important place to train profession talented person that match social needs,so it is very important to build stable and long-term practice bases.At present,the main problems in the construction of practice bases for postgraduates in local colleges and universities are mainly focusing on construction and neglecting management,imperfect cooperation mechanism and lack of teaching management effectively.It is of great significance to build a long-term management mechanism to ensure the education quality of practice bases.Therefore,constructing the mode of"double integration and double promotion of production and education"with practice bases as the carrier and realizing the organic combination of industrial needs and postgraduate projects is an important idea for local colleges and universities to train professional degree postgraduates to"know agriculture,love agriculture,strengthen agriculture and promote agriculture",and it also provides a reference for the mechanism construction of postgraduate bases.
基金supported by the National Natural Science Foundation of China(No.51275265,51175286)
文摘Heavy truck tires are one of ihe rnam sources of road traffic noise. However, the mecha- nism and plopagation of the noise generated by these tires have not been systematically investigated 7o determine the noise of heavy truck tires with different structures and patterns, and to analyze the coraelation between the indoor tire noise and coast-by tire noise, an integrated tire indoor noise test and a coast-by noise test were designed and successfully implemented. The indoor test was conducted on a drum inside a semi- anechoic chamber to simultaneously measure the near field and far field noise of the tires. The outdoor measurements were carried out using a coast-by test on the new ISO 10844 surface. A formula for quantitative analysis with appropriate corrections was developed to analyze the data with reasonable errors, which can be used to predict the coast-by noise through the indool tire noise test accurately and effectively. The analysis shows that when trying to build the relationship between indoor and outdoor heavy truck tire noise, care should be taken to differentiate the tires with a load capacity index in excess of 121 and without any dual fitting indication from ordinary tires, due to the specified test procedure.