Recent evidence exists that glucose transporter 3(GLUT3) plays an important role in the energy metabolism in the brain.Most previous studies have been conducted using focal or hypoxic ischemia models and have focuse...Recent evidence exists that glucose transporter 3(GLUT3) plays an important role in the energy metabolism in the brain.Most previous studies have been conducted using focal or hypoxic ischemia models and have focused on changes in GLUT3 expression based on protein and m RNA levels rather than tissue levels.In the present study,we observed change in GLUT3 immunoreactivity in the adult gerbil hippocampus at various time points after 5 minutes of transient forebrain ischemia.In the sham-operated group,GLUT3 immunoreactivity in the hippocampal CA1 region was weak,in the pyramidal cells of the CA1 region increased in a time-dependent fashion 24 hours after ischemia,and in the hippocampal CA1 region decreased significantly between 2 and 5 days after ischemia,with high level of GLUT3 immunoreactivity observed in the CA1 region 10 days after ischemia.In a double immunofluorescence study using GLUT3 and glial-fibrillary acidic protein(GFAP),we observed strong GLUT3 immunoreactivity in the astrocytes.GLUT3 immunoreactivity increased after ischemia and peaked 7 days in the dentate gyrus after ischemia/reperfusion.In a double immunofluorescence study using GLUT3 and doublecortin(DCX),we observed low level of GLUT3 immunoreactivity in the differentiated neuroblasts of the subgranular zone of the dentate gyrus after ischemia.GLUT3 immunoreactivity in the sham-operated group was mainly detected in the subgranular zone of the dentate gyrus.These results suggest that the increase in GLUT3 immunoreactivity may be a compensatory mechanism to modulate glucose level in the hippocampal CA1 region and to promote adult neurogenesis in the dentate gyrus.展开更多
In the present study, we investigated the effects of hypothyroidism on the morphology of astrocytes and microglia in the hippocampus of Zucker diabetic fatty rats and Zucker lean control rats. To induce hypothyroidism...In the present study, we investigated the effects of hypothyroidism on the morphology of astrocytes and microglia in the hippocampus of Zucker diabetic fatty rats and Zucker lean control rats. To induce hypothyroidism, Zucker lean control and Zucker diabetic fatty rats at 7 weeks of age orally received the vehicle or methimazole, an anti-thyroid drug, treatment for 5 weeks and were sacrificed at 12 weeks of age in all groups for blood chemistry and immunohistochemical staining. In the me- thimazole-treated Zucker lean control and Zucker diabetic fatty rats, the serum circulating triiodo- thyronine (T3) and thyroxine ('I"4) levels were significantly decreased compared to levels observed in the vehicle-treated Zucker lean control or Zucker diabetic fatty rats. This reduction was more prominent in the methimazole-treated Zucker diabetic fatty group. Glial fibrillary acidic protein im- munoreactive astrocytes and ionized calcium-binding adapter molecule 1 (Iba-1)-immunoreactive microglia in the Zucker lean control and Zucker diabetic fatty group were diffusely detected in the hippocampal CA1 region and dentate gyrus. There were no significant differences in the glial fibril- lary acidic protein and Iba-1 immunoreactivity in the CA1 region and dentate gyrus between Zucker lean control and Zucker diabetic fatty groups. However, in the methimazole-treated Zucker lean control and Zucker diabetic fatty groups, the processes of glial fibrillary acidic protein immunoreac- tive astrocytes and Iba-1 immunoreactive microglia, were significantly decreased in both the CA1 region and dentate gyrus compared to that in the vehicle-treated Zucker lean control and Zucker diabetic fatty groups. These results suggest that diabetes has no effect on the morphology of as- trocytes and microglia and that hypothyroidism during the onset of diabetes prominently reduces the processes of astrocytes and microglia.展开更多
Entacapone,a catechol-O-methyltransferase inhibitor,can strengthen the therapeutic effects of levodopa on the treatment of Parkinson’s disease.However,few studies are reported on whether entacapone can affect hippoca...Entacapone,a catechol-O-methyltransferase inhibitor,can strengthen the therapeutic effects of levodopa on the treatment of Parkinson’s disease.However,few studies are reported on whether entacapone can affect hippocampal neurogenesis in mice.To investigate the effects of entacapone,a modulator of dopamine,on proliferating cells and immature neurons in the mouse hippocampal dentate gyrus,60 mice(7 weeks old)were randomly divided into a vehicle-treated group and the groups treated with 10,50,or 200 mg/kg entacapone.The results showed that 50 and 200 mg/kg entacapone increased the exploration time for novel object recognition.Immunohistochemical staining results revealed that after entacapone treatment,the numbers of Ki67-positive proliferating cells,doublecortin-positive immature neurons,and phosphorylated cAMP response element-binding protein(pCREB)-positive cells were significantly increased.Western blot analysis results revealed that treatment with tyrosine kinase receptor B(TrkB)receptor antagonist significantly decreased the exploration time for novel object recognition and inhibited the expression of phosphorylated TrkB and brain-derived neurotrophic factor(BDNF).Entacapone treatment antagonized the effects of TrkB receptor antagonist.These results suggest that entacapone treatment promoted hippocampal neurogenesis and improved memory function through activating the BDNF-TrkB-pCREB pathway.This study was approved by the Institutional Animal Care and Use Committee of Seoul National University(approval No.SNU-130730-1)on February 24,2014.展开更多
In the present study, we used immunohistochemistry and western blot analysis to examine changes in the levels and cellular localization of iron, heavy chain ferritin(ferritin-H), and transferrin in the gerbil hippoc...In the present study, we used immunohistochemistry and western blot analysis to examine changes in the levels and cellular localization of iron, heavy chain ferritin(ferritin-H), and transferrin in the gerbil hippocampal CA1 region from 30 minutes to 7 days following transient forebrain ischemia. Relative to sham controls, iron reactivity increased significantly in the stratum pyramidale and stratum oriens at 12 hours following ischemic insult, transiently decreased at 1–2 days and then increased once again within the CA1 region at 4–7 days after ischemia. One day after ischemia, ferritin-H immunoreactivity increased significantly in the stratum pyramidale and decreased at 2 days. At 4–7 days after ischemia, ferritin-H immunoreactivity in the glial components in the CA1 region was significantly increased. Transferrin immunoreactivity was increased significantly in the stratum pyramidale at 12 hours, peaked at 1 day, and then decreased significantly at 2 days after ischemia. Seven days after ischemia, Transferrin immunoreactivity in the glial cells of the stratum oriens and radiatum was significantly increased. Western blot analyses supported these results, demonstrating that compared to sham controls, ferritin H and transferrin protein levels in hippocampal homogenates significantly increased at 1 day after ischemia, peaked at 4 days and then decreased. These results suggest that iron overload-induced oxidative stress is most prominent at 12 hours after ischemia in the stratum pyramidale, suggesting that this time window may be the optimal period for therapeutic intervention to protect neurons from ischemia-induced death.展开更多
In this study, we investigated the effects of streptozotocin-induced type 1 diabetes on antioxi- dant-like protein-1 immunoreactivity, protein carbonyl levels, and malondialdehyde formation, a marker for lipid peroxid...In this study, we investigated the effects of streptozotocin-induced type 1 diabetes on antioxi- dant-like protein-1 immunoreactivity, protein carbonyl levels, and malondialdehyde formation, a marker for lipid peroxidation, in the hippocampus. For this study, streptozotocin (75 mg/kg) was intraperitoneally injected into adult rats to induce type 1 diabetes. The three experimental pa- rameters were determined at 2, 3, 4 weeks after streptozotocin treatment. Fasting blood glucose levels significantly increased by 20.7-21.9 mM after streptozotocin treatment. The number of antioxidant-like protein-1 immunoreactive neurons significantly decreased in the hippocampal CA1 region, but not the dentate gyrus, 3 weeks after streptozotocin treatment compared to the control group. Malondialdehyde and protein carbonyl levels, which are modified by oxidative stress, significantly increased with a peak at 3 weeks after malondialdehyde treatment, and then decreased 4 weeks after malondialdehyde treatment. These results suggest that neurons in the hippocampal CA1 region, but not the dentate gyrus, are susceptible to oxidative stress 3 weeks after malondialdehyde treatment.展开更多
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education,No.NRF-2013R1A1A2059364,NRF-2015R1D1A3A01020635)by 2013 Research Grant from Kangwon National Universitypartially supported by the Research Institute for Veterinary Science,Seoul National University
文摘Recent evidence exists that glucose transporter 3(GLUT3) plays an important role in the energy metabolism in the brain.Most previous studies have been conducted using focal or hypoxic ischemia models and have focused on changes in GLUT3 expression based on protein and m RNA levels rather than tissue levels.In the present study,we observed change in GLUT3 immunoreactivity in the adult gerbil hippocampus at various time points after 5 minutes of transient forebrain ischemia.In the sham-operated group,GLUT3 immunoreactivity in the hippocampal CA1 region was weak,in the pyramidal cells of the CA1 region increased in a time-dependent fashion 24 hours after ischemia,and in the hippocampal CA1 region decreased significantly between 2 and 5 days after ischemia,with high level of GLUT3 immunoreactivity observed in the CA1 region 10 days after ischemia.In a double immunofluorescence study using GLUT3 and glial-fibrillary acidic protein(GFAP),we observed strong GLUT3 immunoreactivity in the astrocytes.GLUT3 immunoreactivity increased after ischemia and peaked 7 days in the dentate gyrus after ischemia/reperfusion.In a double immunofluorescence study using GLUT3 and doublecortin(DCX),we observed low level of GLUT3 immunoreactivity in the differentiated neuroblasts of the subgranular zone of the dentate gyrus after ischemia.GLUT3 immunoreactivity in the sham-operated group was mainly detected in the subgranular zone of the dentate gyrus.These results suggest that the increase in GLUT3 immunoreactivity may be a compensatory mechanism to modulate glucose level in the hippocampal CA1 region and to promote adult neurogenesis in the dentate gyrus.
基金supported by the National Research Foundation of Korea Grant funded by the Korean Government(MEST),Republic of Korea,No.2010-0007712
文摘In the present study, we investigated the effects of hypothyroidism on the morphology of astrocytes and microglia in the hippocampus of Zucker diabetic fatty rats and Zucker lean control rats. To induce hypothyroidism, Zucker lean control and Zucker diabetic fatty rats at 7 weeks of age orally received the vehicle or methimazole, an anti-thyroid drug, treatment for 5 weeks and were sacrificed at 12 weeks of age in all groups for blood chemistry and immunohistochemical staining. In the me- thimazole-treated Zucker lean control and Zucker diabetic fatty rats, the serum circulating triiodo- thyronine (T3) and thyroxine ('I"4) levels were significantly decreased compared to levels observed in the vehicle-treated Zucker lean control or Zucker diabetic fatty rats. This reduction was more prominent in the methimazole-treated Zucker diabetic fatty group. Glial fibrillary acidic protein im- munoreactive astrocytes and ionized calcium-binding adapter molecule 1 (Iba-1)-immunoreactive microglia in the Zucker lean control and Zucker diabetic fatty group were diffusely detected in the hippocampal CA1 region and dentate gyrus. There were no significant differences in the glial fibril- lary acidic protein and Iba-1 immunoreactivity in the CA1 region and dentate gyrus between Zucker lean control and Zucker diabetic fatty groups. However, in the methimazole-treated Zucker lean control and Zucker diabetic fatty groups, the processes of glial fibrillary acidic protein immunoreac- tive astrocytes and Iba-1 immunoreactive microglia, were significantly decreased in both the CA1 region and dentate gyrus compared to that in the vehicle-treated Zucker lean control and Zucker diabetic fatty groups. These results suggest that diabetes has no effect on the morphology of as- trocytes and microglia and that hypothyroidism during the onset of diabetes prominently reduces the processes of astrocytes and microglia.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea Government(MSIP)(NRF-2016R1A2B4009156)the Promising-Pioneering Researcher Program through Seoul National University(SNU)in 2015 and by the Research Institute for Veterinary Science,Seoul National University.
文摘Entacapone,a catechol-O-methyltransferase inhibitor,can strengthen the therapeutic effects of levodopa on the treatment of Parkinson’s disease.However,few studies are reported on whether entacapone can affect hippocampal neurogenesis in mice.To investigate the effects of entacapone,a modulator of dopamine,on proliferating cells and immature neurons in the mouse hippocampal dentate gyrus,60 mice(7 weeks old)were randomly divided into a vehicle-treated group and the groups treated with 10,50,or 200 mg/kg entacapone.The results showed that 50 and 200 mg/kg entacapone increased the exploration time for novel object recognition.Immunohistochemical staining results revealed that after entacapone treatment,the numbers of Ki67-positive proliferating cells,doublecortin-positive immature neurons,and phosphorylated cAMP response element-binding protein(pCREB)-positive cells were significantly increased.Western blot analysis results revealed that treatment with tyrosine kinase receptor B(TrkB)receptor antagonist significantly decreased the exploration time for novel object recognition and inhibited the expression of phosphorylated TrkB and brain-derived neurotrophic factor(BDNF).Entacapone treatment antagonized the effects of TrkB receptor antagonist.These results suggest that entacapone treatment promoted hippocampal neurogenesis and improved memory function through activating the BDNF-TrkB-pCREB pathway.This study was approved by the Institutional Animal Care and Use Committee of Seoul National University(approval No.SNU-130730-1)on February 24,2014.
基金supported by Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education,No.2015R1D1A1A01059980partially supported by the Research Institute for Veterinary Science,Seoul National University
文摘In the present study, we used immunohistochemistry and western blot analysis to examine changes in the levels and cellular localization of iron, heavy chain ferritin(ferritin-H), and transferrin in the gerbil hippocampal CA1 region from 30 minutes to 7 days following transient forebrain ischemia. Relative to sham controls, iron reactivity increased significantly in the stratum pyramidale and stratum oriens at 12 hours following ischemic insult, transiently decreased at 1–2 days and then increased once again within the CA1 region at 4–7 days after ischemia. One day after ischemia, ferritin-H immunoreactivity increased significantly in the stratum pyramidale and decreased at 2 days. At 4–7 days after ischemia, ferritin-H immunoreactivity in the glial components in the CA1 region was significantly increased. Transferrin immunoreactivity was increased significantly in the stratum pyramidale at 12 hours, peaked at 1 day, and then decreased significantly at 2 days after ischemia. Seven days after ischemia, Transferrin immunoreactivity in the glial cells of the stratum oriens and radiatum was significantly increased. Western blot analyses supported these results, demonstrating that compared to sham controls, ferritin H and transferrin protein levels in hippocampal homogenates significantly increased at 1 day after ischemia, peaked at 4 days and then decreased. These results suggest that iron overload-induced oxidative stress is most prominent at 12 hours after ischemia in the stratum pyramidale, suggesting that this time window may be the optimal period for therapeutic intervention to protect neurons from ischemia-induced death.
基金supported by a National Research Foundation of Korea Grant funded by the Korean Government(MEST)Republic of Korea,No.2010-0007712
文摘In this study, we investigated the effects of streptozotocin-induced type 1 diabetes on antioxi- dant-like protein-1 immunoreactivity, protein carbonyl levels, and malondialdehyde formation, a marker for lipid peroxidation, in the hippocampus. For this study, streptozotocin (75 mg/kg) was intraperitoneally injected into adult rats to induce type 1 diabetes. The three experimental pa- rameters were determined at 2, 3, 4 weeks after streptozotocin treatment. Fasting blood glucose levels significantly increased by 20.7-21.9 mM after streptozotocin treatment. The number of antioxidant-like protein-1 immunoreactive neurons significantly decreased in the hippocampal CA1 region, but not the dentate gyrus, 3 weeks after streptozotocin treatment compared to the control group. Malondialdehyde and protein carbonyl levels, which are modified by oxidative stress, significantly increased with a peak at 3 weeks after malondialdehyde treatment, and then decreased 4 weeks after malondialdehyde treatment. These results suggest that neurons in the hippocampal CA1 region, but not the dentate gyrus, are susceptible to oxidative stress 3 weeks after malondialdehyde treatment.