期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Increasing(010) active plane of P2-type layered cathodes with hexagonal prism towards improved sodium-storage
1
作者 Dongmei Dai Xiaobing Lai +8 位作者 Xiaojuan Wang Yunting Yao Mengmin Jia Liang Wang Pengyao Yan Yaru Qiao Zhuangzhuang Zhang Bao Li dai-huo liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第10期505-509,共5页
Na-ion cathode materials with a fast charge and discharge behavior are needed to develop future high energy sodium-ion batteries(SIBs).However,inevitably complicated phase transitions and sluggish kinet ics during ins... Na-ion cathode materials with a fast charge and discharge behavior are needed to develop future high energy sodium-ion batteries(SIBs).However,inevitably complicated phase transitions and sluggish kinet ics during insertion and removal of Na+in P_(2)-type layered transition metal oxides generate structura instability and severe capacity decay.To get rid of such a dilemma,we report a structural optimization strategy to promote P2-type layered transition metal oxides with more(010)active planes as an efficien cathode for SIBs.As a result,as-prepared hexagonal-prism P2-type layered Na_(0.71)Ni_(0.16)Li_(0.09)Co_(0.16)Mn0.6O_(2)cathode with more(010)active planes delivers a reversible capacity of 120.1 mAh/g at 0.1 C,impressive rate capability of 52.7 m Ah/g at 10 C,and long-term cycling stability(capacity retention of 95.6%ove200 cycles).The outstanding electrochemical performance benefited from the unique hexagonal-prism with more(010)active facets,which can effectively shorten the diffusion distances of Na+,increase the Na-ion migration dynamics and nanostructural stability during cycling verified by morphology character ization,Rietveld refinement,GITT,density functional theory calculations and operando XRD. 展开更多
关键词 Layered cathodes Hexagonal-prism shape P2-type structure Sodiumion batteries Enhanced diffusion kinetics
原文传递
LPEO enhanced LAGP composite solid electrolytes for lithium metal batteries
2
作者 Dongmei Dai Pengyao Yan +9 位作者 Xinxin Zhou Haowen Li Zhuangzhuang Zhang Liang Wang Mingming Han Xiaobing Lai Yaru Qiao Mengmin Jia Bao Li dai-huo liu 《Green Carbon》 2024年第3期310-315,共6页
The application of solid electrolyte is expected to realize the commercialization of high energy density lithium metal batteries(LMBs).While the interfacial contact between solid inorganic electrolyte and electrodes h... The application of solid electrolyte is expected to realize the commercialization of high energy density lithium metal batteries(LMBs).While the interfacial contact between solid inorganic electrolyte and electrodes has become a stumbling block for achieving stable cycling in LMBs.In this work,a Li-containing polyethylene oxide(LPEO)was introduced between LAGP and electrodes as a buffer layer to regulate the interfacial compatibility and reduce interfacial impedance,inhibiting the side reactions.Moreover,ether-oxygen bond on LPEO chain can coordinate with Li+and guide the transportation of Li+,achieving fast Li+diffusion between Li1+xAlxGe2-x(PO4)3(LAGP)and electrodes.Specifically,the growth of lithium dendrites is effectively suppressed in LAGP with LPEO modification,which would lead to remarkable cycling stability and rate capability.Therefore,the Li|LPEO-LAGP|Li battery can cycle stably for more than 600 h at 0.1 mA cm−2.In addition,long-term performance of Li|LPEO-LAGP|LiFePO4(LFP)battery was achieved at a rate of 0.4 C,and capacity retention is more than 74%after 200 cycles.The Li|LPEO-LAGP|LiNi0.8Co0.1Mn0.1O2 also realized the steady operation in the voltage range of 2.8-4.3 V. 展开更多
关键词 LAGP solid electrolyte LPEO buffer layer Interfacial modification High ionic conductivity Lithium metal battery
原文传递
Pre-constructed SEI on graphite-based interface enables long cycle stability for dual ion sodium batteries 被引量:2
3
作者 Bao Li Bobo Cao +4 位作者 Xinxin Zhou Zhuangzhuang Zhang Dongmei Dai Mengmin Jia dai-huo liu 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第7期323-326,共4页
Lithium batteries have been widely used in all over the world for its high energy density, long-term cycle stability. While the resources of lithium metal and transition metal are limited, which restrict their applica... Lithium batteries have been widely used in all over the world for its high energy density, long-term cycle stability. While the resources of lithium metal and transition metal are limited, which restrict their applications in the grid energy storage. Dual ion sodium batteries(DISBs) possess higher energy density,especially owning high power density for its higher operating voltage(> 4.5 V). Nevertheless, the poor oxidation tolerance of carbonate electrolyte and the co-intercalation of solvents accompanied with anions are main obstacles to make the DISBs commercialization. Herein, a physical barrier(artificial SEI film) is pre-constructed in the Na||graphite batteries to solve these thorny problems. With the CSMG(covered SEI on modified graphite), batteries deliver higher capacity 40 mAh/g even under the current density of 300 mA/g and the capacity retention maintains very well after 100 cycles at a high operating voltage.Moreover, the function mechanism was revealed by in-situ XRD, demonstrating that the pre-constructed SEI can effectively suppress the irreversible phase transition and exfoliation of graphite, resulting from the co-intercalation of anions. Additionally, the work voltage windows of carbonate electrolyte are significantly broadened by establishing electrode/electrolyte interphase. This method opens up an avenue for the practical application of DISBs on the grid energy storage and other fields. 展开更多
关键词 Dual ion sodium batteries Carbonate electrolyte High voltage Anion co-intercalation Pre-constructed SEI
原文传递
Trace doping realizing superior electrochemical performance in P2-type Na_(0.50)Li_(0.08)Mn_(0.60)Co_(0.16)Ni_(0.16)0_(2)cathode for sodium-ion batteries
4
作者 Hongying Hou Jinxu Qiu +9 位作者 Bao Li Liang Wang Zhuangzhuang Zhang Mengmin Jia Xiaobing Lai Mingming Han Pengyao Yan dai-huo liu Dongmei Dai Bao Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第12期387-391,共5页
P2-type layered oxides are receiving significant interest due to their superior structure and intrinsic performances.There are strenuous attempts to balance the structure stability,phase transition as well as desirabl... P2-type layered oxides are receiving significant interest due to their superior structure and intrinsic performances.There are strenuous attempts to balance the structure stability,phase transition as well as desirable electrochemical performances by inducing anion/cation ions,changing morphology,adjusting valence,etc.In this work,several same-period elements of Sc,Ti,V,Cr,Fe,Cu and Zn are doped into Na_(0.50)Li_(0.08)Mn_(0.60)Co_(0.16)Ni_(0.16)O_(2)cathodes,which are manipulated by ions radii and valence state,further studied by operando X-ray powder diffraction patterns(XRD).As a result,the Cu^(2+)doped cathode performed higher rate capacities(as high as 86 mAh/g even at 10 C)and more stable structures(capacity retention of~89.4%for 100 cycles),which owing to the synergistic effect among the tightened TMO_(2)layer,enlarged d-spacing,reduce O-O electrostatic repulsion,ameliorate lattice distortion as well as mitigate ordering of Na^(+)/vacancy. 展开更多
关键词 P2-type layeredoxide Same-period elements doping Rietveld refinement Operando XRD Sodium-ion battery
原文传递
In situ constructing(MnS/Mn_(2)SnS_4)@N,S-ACTs heterostructure with superior Na/Li-storage capabilities in half-cells and pouch full-cells
5
作者 dai-huo liu Ao Wang +7 位作者 Hong-Yan Lü Xing-Long Wu Dan Luo Wen-Hao Li Jin-Zhi Guo Haozhen Dou Qianyi Ma Zhongwei Chen 《Chinese Chemical Letters》 SCIE CAS 2024年第11期522-527,共6页
Effective design of nanoheterostructure anode with high ion/electron migration kinetics can give electrode with superior electrochemical performance.However,the design and preparation of nanoheterostructure composites... Effective design of nanoheterostructure anode with high ion/electron migration kinetics can give electrode with superior electrochemical performance.However,the design and preparation of nanoheterostructure composites with high-capacity and long cycling life in half and pouch full cells remain a big challenge.Here,a novel micro-pore MnS/Mn_(2)SnS_(4)heterostructure nanowire were in situ encapsulated into the N and S elements co-doped amorphous carbon tubes(abbreviated as(MnS/Mn_(2)SnS_(4))@N,S-ACTs)and showed superior energy storage properties in Na-/Li-ion half cells and pouch full cells.The Na-/Li-storage capabilities improvement are attribute to the strong synergistic effect between MnS/Mn_(2)SnS_(4)heterostructure and N,S-ACTs protective layer,the former induces an local built-in electric field between Mn_(2)Sn S_(4)and MnS during charging/discharging,accelerating interfacial ion/electron diffusion dynamics,the latter effective maintains the morphology and volume evolution during Na~+/Li~+charging/discharging,achieving a long-term cycling stability(e.g.,high discharge capacity of 79.2 mAh/g with the capacity retention of 79.3%can be gained after 2200 cycles at 3 C in(Mn S/Mn_(2)Sn S_(4))@N,S-ACTs//LiFePO_(4)pouch full cells;a high capacity of~34 mAh/g at 10 C can be got with a Coulombic efficiency of 100%after 1000 cycles in pouch(Mn S/Mn_(2)Sn S_(4))@N,S-ACTs//Na_(3)V_(2)(PO_(4))_(2)O_(2)F full cells. 展开更多
关键词 (MnS/Mn_(2)SnS_(4))@N S-ACTs Heterostructure Long cycling life Na-/Li-ion half cells Pouch full cells
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部