期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Algorithm Selection Method Based on Coupling Strength for Partitioned Analysis of Structure-Piezoelectric-Circuit Coupling
1
作者 daisuke ishihara Naoto Takayama 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1237-1258,共22页
In this study, we propose an algorithm selection method based on coupling strength for the partitioned analysis ofstructure-piezoelectric-circuit coupling, which includes two types of coupling or inverse and direct pi... In this study, we propose an algorithm selection method based on coupling strength for the partitioned analysis ofstructure-piezoelectric-circuit coupling, which includes two types of coupling or inverse and direct piezoelectriccoupling and direct piezoelectric and circuit coupling. In the proposed method, implicit and explicit formulationsare used for strong and weak coupling, respectively. Three feasible partitioned algorithms are generated, namely(1) a strongly coupled algorithm that uses a fully implicit formulation for both types of coupling, (2) a weaklycoupled algorithm that uses a fully explicit formulation for both types of coupling, and (3) a partially stronglycoupled and partially weakly coupled algorithm that uses an implicit formulation and an explicit formulation forthe two types of coupling, respectively.Numerical examples using a piezoelectric energy harvester,which is a typicalstructure-piezoelectric-circuit coupling problem, demonstrate that the proposed method selects the most costeffectivealgorithm. 展开更多
关键词 MULTIPHYSICS coupling strength partitioned algorithm structure-piezoelectric-circuit coupling strongly coupled algorithm weakly coupled algorithm
下载PDF
Hybrid Strategy of Partitioned and Monolithic Methods for Solving Strongly Coupled Analysis of Inverse and Direct Piezoelectric and Circuit Coupling
2
作者 daisuke ishihara Syunnosuke Nozaki +1 位作者 Tomoya Niho Naoto Takayama 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1371-1386,共16页
The inverse and direct piezoelectric and circuit coupling are widely observed in advanced electro-mechanical systems such as piezoelectric energy harvesters.Existing strongly coupled analysis methods based on direct n... The inverse and direct piezoelectric and circuit coupling are widely observed in advanced electro-mechanical systems such as piezoelectric energy harvesters.Existing strongly coupled analysis methods based on direct numerical modeling for this phenomenon can be classified into partitioned or monolithic formulations.Each formulation has its advantages and disadvantages,and the choice depends on the characteristics of each coupled problem.This study proposes a new option:a coupled analysis strategy that combines the best features of the existing formulations,namely,the hybrid partitioned-monolithic method.The analysis of inverse piezoelectricity and the monolithic analysis of direct piezoelectric and circuit interaction are strongly coupled using a partitioned iterative hierarchical algorithm.In a typical benchmark problem of a piezoelectric energy harvester,this research compares the results from the proposed method to those from the conventional strongly coupled partitioned iterative method,discussing the accuracy,stability,and computational cost.The proposed hybrid concept is effective for coupled multi-physics problems,including various coupling conditions. 展开更多
关键词 Structure-piezoelectric-circuit interaction energy harvesting partitioned method monolithic method hybrid method
下载PDF
Partitioned Method of Insect Flapping Flight for Maneuvering Analysis 被引量:1
3
作者 Minato Onishi daisuke ishihara 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第10期145-175,共31页
This study proposed a partitioned method to analyze maneuvering of insects during flapping flight.This method decomposed the insect flapping flight into wing and body subsystems and then coupled them via boundary cond... This study proposed a partitioned method to analyze maneuvering of insects during flapping flight.This method decomposed the insect flapping flight into wing and body subsystems and then coupled them via boundary conditions imposed on the wing’s base using one-way coupling.In the wing subsystem,the strong coupling of the flexible wings and surrounding fluid was accurately analyzed using the finite element method to obtain the thrust forces acting on the insect’s body.The resulting thrust forces were passed from the wing subsystem to the body subsystem,and then rigid body motion was analyzed in the body subsystem.The rolling,yawing,and pitching motions were simulated using the proposed method as follows:In the rolling simulation,the difference of the stroke angle between the right and left wings caused a roll torque.In the yawing simulation,the initial feathering angle in the right wing only caused a yaw torque.In the pitching simulation,the difference between the front-and back-stroke angles in both the right and left wings caused a pitch torque.All three torques generated maneuvering motion comparable with that obtained in actual observations of insect flight.These results demonstrate that the proposed method can adequately simulate the fundamental maneuvers of insect flapping flight.In the present simulations,the maneuvering mechanisms were investigated at the governing equation level,which might be difficult using other approaches.Therefore,the proposed method will contribute to revealing the underlying insect flight mechanisms. 展开更多
关键词 INSECT FLAPPING flight MANEUVERABILITY fluid-structure interaction partitioned METHOD PROJECTION METHOD STRONGLY coupled METHOD one-way coupling finite element METHOD
下载PDF
Importance of Three-Dimensional Piezoelectric Coupling Modeling in Quantitative Analysis of Piezoelectric Actuators 被引量:1
4
作者 daisuke ishihara Prakasha Chigahalli Ramegowda +1 位作者 Shoichi Aikawa Naoki Iwamaru 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1187-1206,共20页
This paper demonstrates the importance of three-dimensional(3-D)piezoelectric coupling in the electromechanical behavior of piezoelectric devices using three-dimensional finite element analyses based on weak and stron... This paper demonstrates the importance of three-dimensional(3-D)piezoelectric coupling in the electromechanical behavior of piezoelectric devices using three-dimensional finite element analyses based on weak and strong coupling models for a thin cantilevered piezoelectric bimorph actuator.It is found that there is a significant difference between the strong and weak coupling solutions given by coupling direct and inverse piezoelectric effects(i.e.,piezoelectric coupling effect).In addition,there is significant longitudinal bending caused by the constraint of the inverse piezoelectric effect in the width direction at the fixed end(i.e.,3-D effect).Hence,modeling of these effects or 3-D piezoelectric coupling modeling is an electromechanical basis for the piezoelectric devices,which contributes to the accurate prediction of their behavior. 展开更多
关键词 Piezoelectric coupling effect piezoelectric bimorph actuator weak coupling strong coupling three-dimensional finite element analysis
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部