期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
New Record Ocean Temperatures and Related Climate Indicators in 2023 被引量:1
1
作者 Lijing CHENG John ABRAHAM +31 位作者 Kevin E.TRENBERTH Tim BOYER Michael EMANN Jiang ZHU Fan wang Fujiang YU Ricardo LOCARNINI John FASULLO Fei ZHENG Yuanlong LI Bin ZHANG Liying WAN Xingrong CHEN dakui wang Licheng FENG Xiangzhou SONG Yulong LIU Franco RESEGHETTI Simona SIMONCELLI Viktor GOURETSKI Gengxin CHEN Alexey MISHONOV Jim REAGAN Karina VON SCHUCKMANN Yuying PAN Zhetao TAN Yujing ZHU wangxu WEI Guancheng LI Qiuping REN Lijuan CAO Yayang LU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第6期1068-1082,共15页
The global physical and biogeochemical environment has been substantially altered in response to increased atmospheric greenhouse gases from human activities.In 2023,the sea surface temperature(SST)and upper 2000 m oc... The global physical and biogeochemical environment has been substantially altered in response to increased atmospheric greenhouse gases from human activities.In 2023,the sea surface temperature(SST)and upper 2000 m ocean heat content(OHC)reached record highs.The 0–2000 m OHC in 2023 exceeded that of 2022 by 15±10 ZJ(1 Zetta Joules=1021 Joules)(updated IAP/CAS data);9±5 ZJ(NCEI/NOAA data).The Tropical Atlantic Ocean,the Mediterranean Sea,and southern oceans recorded their highest OHC observed since the 1950s.Associated with the onset of a strong El Niño,the global SST reached its record high in 2023 with an annual mean of~0.23℃ higher than 2022 and an astounding>0.3℃ above 2022 values for the second half of 2023.The density stratification and spatial temperature inhomogeneity indexes reached their highest values in 2023. 展开更多
关键词 ocean heat content SALINITY STRATIFICATION global warming CLIMATE
下载PDF
Three-dimensional thermohaline structure estimation derived from HY-2 satellite data over the Maritime Silk Road and its applications
2
作者 Zhiqiang Chen Xidong wang +4 位作者 Xiangyu Wu Yuan Cao Zikang He dakui wang Jian Chen 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第5期41-53,共13页
Estimated ocean subsurface fields derived from satellite observations provide potential data sources for operational marine environmental monitoring and prediction systems.This study employs a statistic regression rec... Estimated ocean subsurface fields derived from satellite observations provide potential data sources for operational marine environmental monitoring and prediction systems.This study employs a statistic regression reconstruction method,in combination with domestic autonomous sea surface height and sea surface temperature observations from the Haiyang-2(HY-2)satellite fusion data,to establish an operational quasi-realtime three-dimensional(3D)temperature and salinity products over the Maritime Silk Road.These products feature a daily temporal resolution and a spatial resolution of 0.25°×0.25°and exhibit stability and continuity.We have demonstrated the accuracy of the reconstructed thermohaline fields in capturing the 3D thermohaline variations through comprehensive statistical evaluations,after comparing them against Argo observations and ocean analysis data from 2022.The results illustrate that the reconstructed fields effectively represent seasonal variations in oceanic subsurface structures,along with structural changes resulting from mesoscale processes,and the upper ocean’s responses to tropical cyclones.Furthermore,the incorporation of HY-2 satellite observations notably enhances the accuracy of temperature and salinity reconstructions in the Northwest Pacific Ocean and marginally improves salinity reconstruction accuracy in the North Indian Ocean when compared to the World Ocean Atlas 2018 monthly climatology thermohaline fields.As a result,the reconstructed product holds promise for providing quasi-real-time 3D temperature and salinity field information to facilitate fast decisionmaking during emergencies,and also offers foundational thermohaline fields for operational ocean reanalysis and forecasting systems.These contributions enhance the safety and stability of ocean subsurface activities and navigation. 展开更多
关键词 HY-2 satellite observations subsurface structures reconstruction Maritime Silk Road operational thermohaline product
下载PDF
Data field for mining big data 被引量:1
3
作者 Shuliang wang Ying Li dakui wang 《Geo-Spatial Information Science》 CSCD 2016年第2期中插2-中插2,106-118,共14页
Big data is a highlighted challenge for many fields with the rapid expansion of large-volume, complex, and fast-growing sources of data. Mining from big data is required for exploring the essence of data and providing... Big data is a highlighted challenge for many fields with the rapid expansion of large-volume, complex, and fast-growing sources of data. Mining from big data is required for exploring the essence of data and providing meaningful information. To this end, we have previously introduced the theory of physical field to explore relations between objects in data space and proposed a framework of data field to discover the underlying distribution of big data. This paper concerns an overview of big data mining by the use of data field. It mainly discusses the theory of data field and different aspects of applications including feature selection for high-dimensional data, clustering, and the recognition of facial expression in human-computer interaction. In these applications, data field is employed to capture the intrinsic distribution of data objects for selecting meaningful features, fast clustering, and describing variation of facial expression. It is expected that our contributions would help overcome the problems in accordance with big data. 展开更多
关键词 Physical FIELD DATA FIELD BIG DATA MINING FEATURE selection hierarchical clustering recognition of FACE expression
全文增补中
上一页 1 下一页 到第
使用帮助 返回顶部