Seasonally frozen soil is a four-phase material and its physical-mechanical properties are more complex compared to the unfrozen soil. Its physical properties changes during the freeze-thaw process; repeated fieeze-th...Seasonally frozen soil is a four-phase material and its physical-mechanical properties are more complex compared to the unfrozen soil. Its physical properties changes during the freeze-thaw process; repeated fieeze-thaw cycles change the characteristics of soil, which can render the soil from an unstable state to a new dynamic equilibrium state. The freezing process changes the structttre coupled between the soil particle arrangements, which will change the mechanical properties of the soil. The method of significance and interaction between different fac tors should be considered to measure the influence on the propties of soil under freeze-thaw cycles.展开更多
Eliminating topological defects to achieve monodomain liquid crystals is highly significant for the fundamental studies of soft matter and building long-range ordered materials.However,liquid crystals are metastable a...Eliminating topological defects to achieve monodomain liquid crystals is highly significant for the fundamental studies of soft matter and building long-range ordered materials.However,liquid crystals are metastable and sensitive to external stimuli,such as flow,confinement,and electromagnetic fields,which cause their intrinsic polycrystallinity and topological defects.Here,we achieve the monodomain liquid crystals of graphene oxide over 30 cm through boundary-free sheargraphy.The obtained monodomain liquid crystals exhibit large-area uniform alignment of sheets,which has the same optical polarized angle and intensity.The monodomain liquid crystals provide bidirectionally ordered skeletons,which can be applied as lightweight thermal management materials with bidirectionally high thermal and electrical conductivity.Furthermore,we extend the controllable topology of two-dimensional colloids by introducing singularities and disclinations in monodomain liquid crystals.Topological structures with defect strength from−2 to+2 were realized.This work provides a facile methodology to study the structural order of soft matter at a macroscopic level,facilitating the fabrication of metamaterials with tunable and highly anisotropic architectures.展开更多
The processing capability is vital for the wide applications of materials to forge structures as-demand.Graphene-based macroscopic materials have shown excellent mechanical and functional properties.However,different ...The processing capability is vital for the wide applications of materials to forge structures as-demand.Graphene-based macroscopic materials have shown excellent mechanical and functional properties.However,different from usual polymers and metals,graphene solids exhibit limited deformability and processibility for precise forming.Here,we present a precise thermoplastic forming of graphene materials by polymer intercalation from graphene oxide(GO)precursor.The intercalated polymer enables the thermoplasticity of GO solids by thermally activated motion of polymer chains.We detect a critical minimum containing of intercalated polymer that can expand the interlayer spacing exceeding 1.4 nm to activate thermoplasticity,which becomes the criteria for thermal plastic forming of GO solids.By thermoplastic forming,the flat GO-composite films are forged to Gaussian curved shapes and imprinted to have surface relief patterns with size precision down to 360 nm.The plastic-formed structures maintain the structural integration with outstanding electrical(3.07×10^(5) S m^(−1))and thermal conductivity(745.65 W m^(−1) K^(−1))after removal of polymers.The thermoplastic strategy greatly extends the forming capability of GO materials and other layered materials and promises versatile structural designs for more broad applications.展开更多
In this article Florian Puchtler at affiliation‘University of Bayreuth’,Josef Breu at affiliation‘University of Bayreuth’,and Ziliang Wu at affiliation‘Zhejiang University’was missing from the author Min Cao,Sen...In this article Florian Puchtler at affiliation‘University of Bayreuth’,Josef Breu at affiliation‘University of Bayreuth’,and Ziliang Wu at affiliation‘Zhejiang University’was missing from the author Min Cao,Senping Liu,Qingli Zhu,Ya Wang,Jingyu Ma,Zeshen Li,Dan Chang,Enhui Zhu,Xin Ming,Florian Puchtler,Josef Breu,Ziliang Wu,Yingjun Liu,Yanqiu Jiang,Zhen Xu,Chao Gao list.展开更多
Permafrost is widely distributed in China and around the world.In permafrost regions,soil frost heave and thawing are severe and frequent,and can destabilize pile foundations.To this end,a finite element model of a si...Permafrost is widely distributed in China and around the world.In permafrost regions,soil frost heave and thawing are severe and frequent,and can destabilize pile foundations.To this end,a finite element model of a single pile in frozen soil is established to investigate the frost heave and frost jacking response to ensure its safety in the Qinghai-Tibet Plateau.Firstly,a hydro-thermal coupling model of a single pile in frozen soil is established based on coupling parameters and initial and boundary conditions.Then the temperature and moisture distributions are analyzed through the established coupling model.A hydro-thermo-mechanical coupling model is developed by importing the ice content and temperature results.Simulation results indicate that the amount of frost heave is greater at locations closer to the ground surface,and the displacement is smaller for frozen soil that is closer to the side of the pile.The results on frost jacking behavior of piles from this study can serve as a reference for the design,construction and maintenance of foundations.展开更多
In 2021,The MOE Key Laboratory of Macromolecular Synthesis and Functionalization in Zhejiang University had achieved several important results.First,a series of versatile organoboron catalysts were synthesized for rin...In 2021,The MOE Key Laboratory of Macromolecular Synthesis and Functionalization in Zhejiang University had achieved several important results.First,a series of versatile organoboron catalysts were synthesized for ring-opening(co)polymerizations.Second,a catalyst-free polycondensation mechanism was proposed for the production of polyesters with high molecular weights.Third,a co-assembly method that can fabricate films and coatings with controllable structures and properties on various substrates was demonstrated,providing a platform for the construction of novel surface coatings.Forth,facile methods for producing high-productivity poly(propylene carbonate)and semicrystalline polyester have been discovered.And linear non-conjugated polyesters exhibiting yellow-green clusteroluminescence were developed for the first time.Fifth,a supramolecular prodrug nano-assembly strategy has been developed for reactive nitrogen species potentiated chemotherapy.Sixth,a series of tough and stiff supramolecular hydrogels with shape memory properties have been used for information encryption.Seventh,reversible fusion and fission of wet-spun graphene oxide fibers has been successfully achieved.Eighth,three non-conjugated polypeptides were synthesized and the mechanism of clusteroluminescence was studied.Ninth,a series of conducting covalent organic frameworks with high electrical conductivity and carrier mobility have been used as high-performance chemiresistor,electrocatalyst,and organic field-effect transistor.Tenth,the exploration of non-fused electron acceptors,and their photostable mechanism are exemplified for developing high-performance,low-cost and eco-friendly polymer solar cells.Finally,gel-grown long-range ordering bulk-heterojunctions has achieved improved X-ray detector performance.展开更多
Graphene oxide(GO),an important chemical precursor of graphene,can stably disperse in aqueous surrounding and undergo aggregation as metal cations introduced.The usual instability of GO with ions is caused by the shie...Graphene oxide(GO),an important chemical precursor of graphene,can stably disperse in aqueous surrounding and undergo aggregation as metal cations introduced.The usual instability of GO with ions is caused by the shielding effect of ions and crosslinking between GO and ions.However,the dynamic stability of GO under ions exchange still remains unclear.Here,we investigated the dynamic dispersion stability of GO with metal ions and observed a redispersion behavior in concentrated Fe3+solution,other than permanent aggregation.The exchange with Fe3+ions drives the reversion of zeta(ζ)potential and enables the redispersion to individual GO-Fe3+complex sheets,following a dynamic electric double layer(EDL)mechanism.It is found that the specifically strong electrostatic shielding effect and coordination attraction between Fe3+and functional oxygen groups allows the selective redispersion of GO in concentrated Fe3+solution.The revealed dynamic dispersion stability complements our understanding on the dispersive stability of GO and can be utilized to fabricate graphene-metal hybrids for rich applications.展开更多
Study of stable liquid crystal(LC)microdroplets is of great significance for LC dynamics in con fined space or at topological surface.However,the fabrication of LC microdroplets with diverse shape without ionic gelati...Study of stable liquid crystal(LC)microdroplets is of great significance for LC dynamics in con fined space or at topological surface.However,the fabrication of LC microdroplets with diverse shape without ionic gelati on agents still remai ns challe nging due to the fluid instability.Here,we utilize the microfluidic tech no logy to prepare graphe ne oxide(GO)LC microdroplets with various morphologies based on the anomalous rheological property of GO aqueous dispersion.Different from LC of one-dimensional polymer,LC containing two-dimensional GO sheets exhibits considerable viscoelasticity and weak extensibility,resulting from the planar molecular conformation and the absence of intermolecular entangleme nts.The low exte risibility ensures that GO aqueous suspension is discretized into mono dispersed microdroplets rather than thin thread in the microfluidic channels.The large viscoelasticity and ultra-1 ong relaxation time of GO LC enable the diverse stable morphologies of microdroplets.The droplet morphology is well con trolled from sphere to teardrop by modulati ng the competition between GO viscoelasticity and in terfacial ten sion.The two-dimensional GO LC featuri ng unique rheological property provides a novel system for the microfluidic field,and corresponding topological stability enriches the LC dyn amics and ope ns a new pathway for desig ning graphe ne-based materials.展开更多
Switchgrass(Panicum virgatum L.), as a model herbaceous crop species for bioenergy production,is targeted to improve biomass yield and feedstock quality.Plant height is a major component contributing to biomass yield....Switchgrass(Panicum virgatum L.), as a model herbaceous crop species for bioenergy production,is targeted to improve biomass yield and feedstock quality.Plant height is a major component contributing to biomass yield. Accordingly, the objectives of this research were to analyze phenotypic variation for biomass and plant height and the association between them and to localize associated plant height QTLs. Two lowland switchgrass mapping populations, one selfed and another hybrid population established in the field at Perkins and Stillwater,Oklahoma, were deployed in the experiment for two years post establishment. Large genetic variation existed for plant biomass and height within the two populations. Plant height was positively correlated with biomass yield in the selfed population(r = 0.39, P < 0.0001) and the hybrid population(r = 0.41, P < 0.0001). In the selfed population,a joint analysis across all environments revealed 10 QTLs and separate analysis for each environment, collectively revealed 39 QTLs related to plant height. In the hybrid population, the joint analysis across overall environments revealed 35 QTLs and the separate analysis for each environment revealed 38 QTLs. The findings of this research contribute new information about the genetic control for plant height and will be useful for future plant breeding and genetic improvement programs in lowland switchgrass.展开更多
基金the support and motivation provided by National 973 Project of China (No. 2012CB026104)the Fundamental Research Funds for the Central Universities (No. 2011JBZ009)
文摘Seasonally frozen soil is a four-phase material and its physical-mechanical properties are more complex compared to the unfrozen soil. Its physical properties changes during the freeze-thaw process; repeated fieeze-thaw cycles change the characteristics of soil, which can render the soil from an unstable state to a new dynamic equilibrium state. The freezing process changes the structttre coupled between the soil particle arrangements, which will change the mechanical properties of the soil. The method of significance and interaction between different fac tors should be considered to measure the influence on the propties of soil under freeze-thaw cycles.
基金The authors gratefully acknowledge the support of National Key Research and Development Program of China(2020YFE0204400)National Natural Science Foundation of China(Nos.52090030,52122301,51973191)+3 种基金Shanxi-Zheda Institute of New Materials and Chemical Engineering(2012SZ-FR004)Hundred Talents Program of Zhejiang University(188020*194231701/113)China Postdoctoral Science Foundation(2021M692772)supported by the Fundamental Research Funds for the Central Universities(Nos.2021FZZX001-17).
文摘Eliminating topological defects to achieve monodomain liquid crystals is highly significant for the fundamental studies of soft matter and building long-range ordered materials.However,liquid crystals are metastable and sensitive to external stimuli,such as flow,confinement,and electromagnetic fields,which cause their intrinsic polycrystallinity and topological defects.Here,we achieve the monodomain liquid crystals of graphene oxide over 30 cm through boundary-free sheargraphy.The obtained monodomain liquid crystals exhibit large-area uniform alignment of sheets,which has the same optical polarized angle and intensity.The monodomain liquid crystals provide bidirectionally ordered skeletons,which can be applied as lightweight thermal management materials with bidirectionally high thermal and electrical conductivity.Furthermore,we extend the controllable topology of two-dimensional colloids by introducing singularities and disclinations in monodomain liquid crystals.Topological structures with defect strength from−2 to+2 were realized.This work provides a facile methodology to study the structural order of soft matter at a macroscopic level,facilitating the fabrication of metamaterials with tunable and highly anisotropic architectures.
基金the support of the National Natural Science Foundation of China(Nos.51803177,51973191,51533008,and 51636002)National Key R&D Program of China(No.2016YFA0200200)+5 种基金the China Postdoctoral Science Foundation(No.2021M690134)Hundred Talents Program of Zhejiang University(188020*194231701/113)Key Research and Development Plan of Zhejiang Province(2018C01049)the National Postdoctoral Program for Innovative Talents(No.BX201700209)the Fundamental Research Funds for the Central Universities(2021FZZX001-17),the Natural Science Foundation of Jiangsu Province(BK20210353)the Fundamental Research Funds for the Central Universities(No.30920041106).
文摘The processing capability is vital for the wide applications of materials to forge structures as-demand.Graphene-based macroscopic materials have shown excellent mechanical and functional properties.However,different from usual polymers and metals,graphene solids exhibit limited deformability and processibility for precise forming.Here,we present a precise thermoplastic forming of graphene materials by polymer intercalation from graphene oxide(GO)precursor.The intercalated polymer enables the thermoplasticity of GO solids by thermally activated motion of polymer chains.We detect a critical minimum containing of intercalated polymer that can expand the interlayer spacing exceeding 1.4 nm to activate thermoplasticity,which becomes the criteria for thermal plastic forming of GO solids.By thermoplastic forming,the flat GO-composite films are forged to Gaussian curved shapes and imprinted to have surface relief patterns with size precision down to 360 nm.The plastic-formed structures maintain the structural integration with outstanding electrical(3.07×10^(5) S m^(−1))and thermal conductivity(745.65 W m^(−1) K^(−1))after removal of polymers.The thermoplastic strategy greatly extends the forming capability of GO materials and other layered materials and promises versatile structural designs for more broad applications.
文摘In this article Florian Puchtler at affiliation‘University of Bayreuth’,Josef Breu at affiliation‘University of Bayreuth’,and Ziliang Wu at affiliation‘Zhejiang University’was missing from the author Min Cao,Senping Liu,Qingli Zhu,Ya Wang,Jingyu Ma,Zeshen Li,Dan Chang,Enhui Zhu,Xin Ming,Florian Puchtler,Josef Breu,Ziliang Wu,Yingjun Liu,Yanqiu Jiang,Zhen Xu,Chao Gao list.
基金supported by the National Natural Science Foundation of China(Nos.42071078,41731281 and 41701068)the Natural Science Foundation of Qinghai Province,China(No.2021-ZJ-908).
文摘Permafrost is widely distributed in China and around the world.In permafrost regions,soil frost heave and thawing are severe and frequent,and can destabilize pile foundations.To this end,a finite element model of a single pile in frozen soil is established to investigate the frost heave and frost jacking response to ensure its safety in the Qinghai-Tibet Plateau.Firstly,a hydro-thermal coupling model of a single pile in frozen soil is established based on coupling parameters and initial and boundary conditions.Then the temperature and moisture distributions are analyzed through the established coupling model.A hydro-thermo-mechanical coupling model is developed by importing the ice content and temperature results.Simulation results indicate that the amount of frost heave is greater at locations closer to the ground surface,and the displacement is smaller for frozen soil that is closer to the side of the pile.The results on frost jacking behavior of piles from this study can serve as a reference for the design,construction and maintenance of foundations.
基金the support from the SCI-TECH Academy of Zhejiang University。
文摘In 2021,The MOE Key Laboratory of Macromolecular Synthesis and Functionalization in Zhejiang University had achieved several important results.First,a series of versatile organoboron catalysts were synthesized for ring-opening(co)polymerizations.Second,a catalyst-free polycondensation mechanism was proposed for the production of polyesters with high molecular weights.Third,a co-assembly method that can fabricate films and coatings with controllable structures and properties on various substrates was demonstrated,providing a platform for the construction of novel surface coatings.Forth,facile methods for producing high-productivity poly(propylene carbonate)and semicrystalline polyester have been discovered.And linear non-conjugated polyesters exhibiting yellow-green clusteroluminescence were developed for the first time.Fifth,a supramolecular prodrug nano-assembly strategy has been developed for reactive nitrogen species potentiated chemotherapy.Sixth,a series of tough and stiff supramolecular hydrogels with shape memory properties have been used for information encryption.Seventh,reversible fusion and fission of wet-spun graphene oxide fibers has been successfully achieved.Eighth,three non-conjugated polypeptides were synthesized and the mechanism of clusteroluminescence was studied.Ninth,a series of conducting covalent organic frameworks with high electrical conductivity and carrier mobility have been used as high-performance chemiresistor,electrocatalyst,and organic field-effect transistor.Tenth,the exploration of non-fused electron acceptors,and their photostable mechanism are exemplified for developing high-performance,low-cost and eco-friendly polymer solar cells.Finally,gel-grown long-range ordering bulk-heterojunctions has achieved improved X-ray detector performance.
基金supported by the National Natural Science Foundation of China(Nos.51533008,51603183,51703194,51803177,21805242 and 5197030056)National Key R&D Program of China(No.2016YFA0200200)+4 种基金Fujian Provincial Science and Technology Major Projects(No.2018HZ0001-2)Hundred Talents Program of Zhejiang University(No.188020*194231701/113)Key Research and Development Plan of Zhejiang Province(No.2018C01049)the Fundamental Research Funds for the Central Universities(Nos.2017QNA4036,2017XZZX001-04)Foundation of National Key Laboratory on Electromagnetic Environment Effects(No.614220504030717)。
文摘Graphene oxide(GO),an important chemical precursor of graphene,can stably disperse in aqueous surrounding and undergo aggregation as metal cations introduced.The usual instability of GO with ions is caused by the shielding effect of ions and crosslinking between GO and ions.However,the dynamic stability of GO under ions exchange still remains unclear.Here,we investigated the dynamic dispersion stability of GO with metal ions and observed a redispersion behavior in concentrated Fe3+solution,other than permanent aggregation.The exchange with Fe3+ions drives the reversion of zeta(ζ)potential and enables the redispersion to individual GO-Fe3+complex sheets,following a dynamic electric double layer(EDL)mechanism.It is found that the specifically strong electrostatic shielding effect and coordination attraction between Fe3+and functional oxygen groups allows the selective redispersion of GO in concentrated Fe3+solution.The revealed dynamic dispersion stability complements our understanding on the dispersive stability of GO and can be utilized to fabricate graphene-metal hybrids for rich applications.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.42071078,42171130,and 42201138)Guangdong Basic and Applied Basic Research Foundation(Grant No.2022A1515010087)the State Key Laboratory Program of Frozen Soil Engineering of China(Grant No.SKLFSE201915).
基金by the National Natural Science Foundation of China(Nos.52090030,51533008,51703194,51973191,51873191 and 51803177)National Key R&D Program of China(No.2016YFA0200200),Hundred Talents Program of Zhejiang University(No.188020*194231701/113),Key Research and Development Plan of Zhejiang Province(2018C01049)+1 种基金the Fundamental Research Funds for the Central Universities(No.K20200060)Key Laboratory of Novel Adsorpti on and Separati on Materials and Applicatio n Technology of Zhejiang Province(No.512301-121502).
文摘Study of stable liquid crystal(LC)microdroplets is of great significance for LC dynamics in con fined space or at topological surface.However,the fabrication of LC microdroplets with diverse shape without ionic gelati on agents still remai ns challe nging due to the fluid instability.Here,we utilize the microfluidic tech no logy to prepare graphe ne oxide(GO)LC microdroplets with various morphologies based on the anomalous rheological property of GO aqueous dispersion.Different from LC of one-dimensional polymer,LC containing two-dimensional GO sheets exhibits considerable viscoelasticity and weak extensibility,resulting from the planar molecular conformation and the absence of intermolecular entangleme nts.The low exte risibility ensures that GO aqueous suspension is discretized into mono dispersed microdroplets rather than thin thread in the microfluidic channels.The large viscoelasticity and ultra-1 ong relaxation time of GO LC enable the diverse stable morphologies of microdroplets.The droplet morphology is well con trolled from sphere to teardrop by modulati ng the competition between GO viscoelasticity and in terfacial ten sion.The two-dimensional GO LC featuri ng unique rheological property provides a novel system for the microfluidic field,and corresponding topological stability enriches the LC dyn amics and ope ns a new pathway for desig ning graphe ne-based materials.
基金supported by NSF EPSCoR award 0814361Oklahoma Agricultural Experiment Station, Hatch OKL2972the South Central Sun Grant Competitive Grants Program
文摘Switchgrass(Panicum virgatum L.), as a model herbaceous crop species for bioenergy production,is targeted to improve biomass yield and feedstock quality.Plant height is a major component contributing to biomass yield. Accordingly, the objectives of this research were to analyze phenotypic variation for biomass and plant height and the association between them and to localize associated plant height QTLs. Two lowland switchgrass mapping populations, one selfed and another hybrid population established in the field at Perkins and Stillwater,Oklahoma, were deployed in the experiment for two years post establishment. Large genetic variation existed for plant biomass and height within the two populations. Plant height was positively correlated with biomass yield in the selfed population(r = 0.39, P < 0.0001) and the hybrid population(r = 0.41, P < 0.0001). In the selfed population,a joint analysis across all environments revealed 10 QTLs and separate analysis for each environment, collectively revealed 39 QTLs related to plant height. In the hybrid population, the joint analysis across overall environments revealed 35 QTLs and the separate analysis for each environment revealed 38 QTLs. The findings of this research contribute new information about the genetic control for plant height and will be useful for future plant breeding and genetic improvement programs in lowland switchgrass.