A means to develop a comparative assessment of the risks of available wastewater effluent disposal options on a local scale needs to be developed to help local decision-makers make decisions on options such as direct ...A means to develop a comparative assessment of the risks of available wastewater effluent disposal options on a local scale needs to be developed to help local decision-makers make decisions on options such as direct or indirect potable reuse options. These options have garnered more interest as a result of water supply limitations in many urban areas. This risk assessment was developed from a risk assessment developed at the University of Miami in 2001 and Florida Atlantic University (FAU) in 2023. Direct potable reuse and injection wells were deemed to have the lowest risk in the most recent study by FAU. However, the injection well option may not be available everywhere. As a result, a more local means to assess exposure risk is needed. This paper outlines the process to evaluate the public health risks associated with available disposal alternatives which may be very limited in some areas. The development of exposure pathways can help local decision-makers define the challenges, and support later expert level analysis upon which public health decisions are based.展开更多
Medical diagnostic tests to detect Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) for individuals in the United States were initially limited to people who were traveling or symptomatic to track disease ...Medical diagnostic tests to detect Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) for individuals in the United States were initially limited to people who were traveling or symptomatic to track disease incidence due to the cost of providing testing for all people in a community on a routine basis. As an alternative to randomly sampling large groups of people to track disease incidence at significant cost, wastewater-based epidemiology (WBE) is a well-established and cost-effective technique to passively measure the prevalence of disease in communities without requiring invasive testing. WBE can also be used as a forecasting tool since the virus is shed in individuals prior to developing symptoms that might otherwise prompt testing. This study applied the WBE approach to understand its effectiveness as a possible forecasting tool by monitoring the SARS-CoV-2 levels in raw wastewater sampled from sewer lift stations at a large public university campus setting including dormitories, academic buildings, and athletic facilities. The WBE analysis was conducted by sampling from building-specific lift stations and enumerating target viral copies using RT-qPCR analysis. The WBE results were compared with the 7-day rolling averages of confirmed infected individuals for the following week after the wastewater sample analysis. In most cases, changes in the WBE outcomes were followed by similar trends in the clinical data. The positive predictive value of the applied WBE approach was 86% for the following week of the sample collection. In contrast, positive correlations between the two data with Spearmen correlation (rs) ranged from 0.16 to 0.36. A stronger correlation (rs = 0.18 to 0.51) was observed when WBE results were compared with COVID-19 cases identified on the next day of the sampling events. The P value of 0.007 for Dorm A suggests high significance, while moderate significance was observed for the other dormitories (B, C, and D). The outcomes of this investigation demonstrate that WBE can be a valuable tool to track the progression of diseases like COVID-19 seven days before diagnostic cases are confirmed, allowing authorities to take necessary measures in advance and also enable authorities to decide to reopen a facility after a quarantine.展开更多
<i>Entamoeba histolytica</i> is an anaerobic parasitic protozoan and well known as a human pathogen, while its close relative, <i>Entamoeba dispar</i>, also possesses similar characteristics as...<i>Entamoeba histolytica</i> is an anaerobic parasitic protozoan and well known as a human pathogen, while its close relative, <i>Entamoeba dispar</i>, also possesses similar characteristics as an infectious agent. These microorganisms are generally transmitted in fecal-contaminated water. However, <i>E. dispar</i> present in industrial wastewater is also capable of creating biofilms that can cause adverse impacts in piping networks. Therefore, it is important to detect both of these protozoan species in water and to find a cost-effective technique for inactivation or management control. This review article summarizes the available detection methods in water and wastewater matrices along with feasible disinfection techniques.展开更多
Deep-well injection is a cost-effective alternative for industrial wastewater disposal, given the appropriate geology. Fouling of injection well tubing by biofilm or scale is common and reduces the effective diameter ...Deep-well injection is a cost-effective alternative for industrial wastewater disposal, given the appropriate geology. Fouling of injection well tubing by biofilm or scale is common and reduces the effective diameter of the pipe, which results in increased wellhead pressure and lower injectivity. A detailed microbiological composition of biofilms and abiotic fingerprints use of mineral scale from an injection well has not been reported before. Therefore, biofilm and mineral scale samples from three depth intervals within a deep injection well (surface zone, D1= 0 - 61 m;intermediate zone, D2 = 62 - 457 m;and above the injection zone, D3 = 458 - 884 m) with recurrent biofilm development were collected to characterize the mineral composition and microbial community DNA. X-ray diffraction (XRD) analysis of the solids confirms the composition of the solids collected was mostly calcium carbonate (CaCO3) with minor contributions from common mineral salts. Microbiological fingerprinting suggests that methanogenic archaea and sulfate-reducing bacteria both of which are anaerobic biofilm producers were the most prevalent members of the prokaryotic community at all sampled depths. Methanosarcinae spp. increased with increasing depths, unlike other archaea. A non-pathogenic biofilm-producing Entamoeba dispar was the most prevalent member of the microbial domain (>30%) in all samples but was highest at the middle depth. The Chao alpha diversity indices for bacteria, viruses, and protozoans were highest at the shallow depth and gradually declined with increasing depth. The prevalent species above the injection zone depth are not barophilic organisms that thrive at high pressures, rather they are sulfate-reducing bacteria involved in anaerobic dissimilatory sulfate metabolism.展开更多
The recharge of non-potable water into a drinking water aquifer is one means to overcome decreasing groundwater supplies and maintain availability of these resources for current and future generations. However, health...The recharge of non-potable water into a drinking water aquifer is one means to overcome decreasing groundwater supplies and maintain availability of these resources for current and future generations. However, health concerns exist regarding the use of waters of “impaired quality” such as reclaimed wastewater for aquifer recharge. The objective of this study is to evaluate the potential risk to drinking water from the use of reclaimed water for recharge purposes using computational modeling with MODFLOW and MT3D groundwater transport simulation based on an actual situation using rotavirus as a surrogate. The results from the simulation showed that after seven months, the risk of contamination based on concentration contours from the injection well to the production wells was stabilized below 10-6.展开更多
Nuisance algal blooms have been a topic of discussion in Florida as a result of highly visible adverse impacts to coastal waters, but algae is hardly a new concern for warm weather communities. The typical treatment i...Nuisance algal blooms have been a topic of discussion in Florida as a result of highly visible adverse impacts to coastal waters, but algae is hardly a new concern for warm weather communities. The typical treatment is with copper sulfate. However, copper has been identified by regulatory agencies as a contaminant of concern in coastal waters and has been targeted for stricter regulations, potentially limiting its use in the future for algae control. The EMOH device was proposed as a means to test whether a “green” solution could be found to this algae concern. EMOH creates high volume oxidation in concert with activated organisms. The initial treatment effort covered one year (2016). During treatment, water quality was monitored with periodic measurements of the benthic detrital layer, which is a precursor to algal blooms in these ponds. Photographs of the extent of algal coverage on the surface, water quality in the pond and thickness measurements of the detrital layer defined success. Through the hot summer, despite regular influx of nutrients and rain, the amount of algae declined, and the detrital layer decreased in thickness from 22 - 24 inches to 7 - 8 inches. The decrease of the detrital layer means that over time, the benthic source of nutrient availability can be more controlled. The authors concluded that the EMOH process was successful and that physically removing the detrital layer may be an important step in long-term algal reductions.展开更多
文摘A means to develop a comparative assessment of the risks of available wastewater effluent disposal options on a local scale needs to be developed to help local decision-makers make decisions on options such as direct or indirect potable reuse options. These options have garnered more interest as a result of water supply limitations in many urban areas. This risk assessment was developed from a risk assessment developed at the University of Miami in 2001 and Florida Atlantic University (FAU) in 2023. Direct potable reuse and injection wells were deemed to have the lowest risk in the most recent study by FAU. However, the injection well option may not be available everywhere. As a result, a more local means to assess exposure risk is needed. This paper outlines the process to evaluate the public health risks associated with available disposal alternatives which may be very limited in some areas. The development of exposure pathways can help local decision-makers define the challenges, and support later expert level analysis upon which public health decisions are based.
文摘Medical diagnostic tests to detect Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) for individuals in the United States were initially limited to people who were traveling or symptomatic to track disease incidence due to the cost of providing testing for all people in a community on a routine basis. As an alternative to randomly sampling large groups of people to track disease incidence at significant cost, wastewater-based epidemiology (WBE) is a well-established and cost-effective technique to passively measure the prevalence of disease in communities without requiring invasive testing. WBE can also be used as a forecasting tool since the virus is shed in individuals prior to developing symptoms that might otherwise prompt testing. This study applied the WBE approach to understand its effectiveness as a possible forecasting tool by monitoring the SARS-CoV-2 levels in raw wastewater sampled from sewer lift stations at a large public university campus setting including dormitories, academic buildings, and athletic facilities. The WBE analysis was conducted by sampling from building-specific lift stations and enumerating target viral copies using RT-qPCR analysis. The WBE results were compared with the 7-day rolling averages of confirmed infected individuals for the following week after the wastewater sample analysis. In most cases, changes in the WBE outcomes were followed by similar trends in the clinical data. The positive predictive value of the applied WBE approach was 86% for the following week of the sample collection. In contrast, positive correlations between the two data with Spearmen correlation (rs) ranged from 0.16 to 0.36. A stronger correlation (rs = 0.18 to 0.51) was observed when WBE results were compared with COVID-19 cases identified on the next day of the sampling events. The P value of 0.007 for Dorm A suggests high significance, while moderate significance was observed for the other dormitories (B, C, and D). The outcomes of this investigation demonstrate that WBE can be a valuable tool to track the progression of diseases like COVID-19 seven days before diagnostic cases are confirmed, allowing authorities to take necessary measures in advance and also enable authorities to decide to reopen a facility after a quarantine.
文摘<i>Entamoeba histolytica</i> is an anaerobic parasitic protozoan and well known as a human pathogen, while its close relative, <i>Entamoeba dispar</i>, also possesses similar characteristics as an infectious agent. These microorganisms are generally transmitted in fecal-contaminated water. However, <i>E. dispar</i> present in industrial wastewater is also capable of creating biofilms that can cause adverse impacts in piping networks. Therefore, it is important to detect both of these protozoan species in water and to find a cost-effective technique for inactivation or management control. This review article summarizes the available detection methods in water and wastewater matrices along with feasible disinfection techniques.
文摘Deep-well injection is a cost-effective alternative for industrial wastewater disposal, given the appropriate geology. Fouling of injection well tubing by biofilm or scale is common and reduces the effective diameter of the pipe, which results in increased wellhead pressure and lower injectivity. A detailed microbiological composition of biofilms and abiotic fingerprints use of mineral scale from an injection well has not been reported before. Therefore, biofilm and mineral scale samples from three depth intervals within a deep injection well (surface zone, D1= 0 - 61 m;intermediate zone, D2 = 62 - 457 m;and above the injection zone, D3 = 458 - 884 m) with recurrent biofilm development were collected to characterize the mineral composition and microbial community DNA. X-ray diffraction (XRD) analysis of the solids confirms the composition of the solids collected was mostly calcium carbonate (CaCO3) with minor contributions from common mineral salts. Microbiological fingerprinting suggests that methanogenic archaea and sulfate-reducing bacteria both of which are anaerobic biofilm producers were the most prevalent members of the prokaryotic community at all sampled depths. Methanosarcinae spp. increased with increasing depths, unlike other archaea. A non-pathogenic biofilm-producing Entamoeba dispar was the most prevalent member of the microbial domain (>30%) in all samples but was highest at the middle depth. The Chao alpha diversity indices for bacteria, viruses, and protozoans were highest at the shallow depth and gradually declined with increasing depth. The prevalent species above the injection zone depth are not barophilic organisms that thrive at high pressures, rather they are sulfate-reducing bacteria involved in anaerobic dissimilatory sulfate metabolism.
文摘The recharge of non-potable water into a drinking water aquifer is one means to overcome decreasing groundwater supplies and maintain availability of these resources for current and future generations. However, health concerns exist regarding the use of waters of “impaired quality” such as reclaimed wastewater for aquifer recharge. The objective of this study is to evaluate the potential risk to drinking water from the use of reclaimed water for recharge purposes using computational modeling with MODFLOW and MT3D groundwater transport simulation based on an actual situation using rotavirus as a surrogate. The results from the simulation showed that after seven months, the risk of contamination based on concentration contours from the injection well to the production wells was stabilized below 10-6.
文摘Nuisance algal blooms have been a topic of discussion in Florida as a result of highly visible adverse impacts to coastal waters, but algae is hardly a new concern for warm weather communities. The typical treatment is with copper sulfate. However, copper has been identified by regulatory agencies as a contaminant of concern in coastal waters and has been targeted for stricter regulations, potentially limiting its use in the future for algae control. The EMOH device was proposed as a means to test whether a “green” solution could be found to this algae concern. EMOH creates high volume oxidation in concert with activated organisms. The initial treatment effort covered one year (2016). During treatment, water quality was monitored with periodic measurements of the benthic detrital layer, which is a precursor to algal blooms in these ponds. Photographs of the extent of algal coverage on the surface, water quality in the pond and thickness measurements of the detrital layer defined success. Through the hot summer, despite regular influx of nutrients and rain, the amount of algae declined, and the detrital layer decreased in thickness from 22 - 24 inches to 7 - 8 inches. The decrease of the detrital layer means that over time, the benthic source of nutrient availability can be more controlled. The authors concluded that the EMOH process was successful and that physically removing the detrital layer may be an important step in long-term algal reductions.