To understand the acoustic and physical properties of piston core samples collected from the Sunda continental shelf and analyze their distribution patterns,the samples were analyzed in laboratory,from which three pro...To understand the acoustic and physical properties of piston core samples collected from the Sunda continental shelf and analyze their distribution patterns,the samples were analyzed in laboratory,from which three provinces were divided in sound speed,sound speed ratio,porosity,wet bulk density,and maximum shear strength.ProvinceⅠhad lower sound speed and sound speed ratio(<1.04),high porosity,and low wet bulk density.ProvinceⅡhad higher sound speed and sound speed ratio(>1.04),low porosity,and high wet bulk density.ProvinceⅢhad the lowest sound speed and sound speed ratio(0.99),highest porosity(81%),and lowest wet bulk density(1.34 g/cm^(3)).The distribution pattern indicates that sediment movement,sediment source,topography,and hydrodynamic conditions influenced the distribution of acoustic and physical properties.Furthermore,we investigated the relationship of the maximum shear strength to the porosity and wet bulk density,and found that the maximum shear strength was proportional to both the porosity and wet bulk density.This finding has significant implications for ocean engineering applications.展开更多
The increase of water temperature, due to thermal discharges from two nuclear power stations, was one of the most significant environmental changes since 1982 in the Daya Bay, located in the north of the South China S...The increase of water temperature, due to thermal discharges from two nuclear power stations, was one of the most significant environmental changes since 1982 in the Daya Bay, located in the north of the South China Sea. This study investigates the long-term (1982-2012) environmental changes in Daya Bay in response to the increase of water temperature, via comprehensively interpreting and analyzing both satellite and in situ observations along with previous data. The results show that: 1) salinity, dissolved oxygen (DO), chemical oxygen demand (COD) and nutrients had been enhanced after the thermal discharges started in 1994;2) the concentration of Chl-a increased while the net-phytoplankton abundance decreased;3) diversity of the phytoplankton community had decreased;4) fishery production had declined;and 5) frequency of Harmful Algal Bloom occurrence had increased. Satellite images show clearly that a thermal plume from the power stations extended toward the interior of Daya Bay, and that surface temperature of the seawater increased as one approached the power stations. The analysis suggests that the thermal water discharged from the two power stations was a driver of the ecosystem’s change in Daya Bay. Several factors, including nutrients, salinity, DO, and COD, varied according to the increase of water temperature. These factors affected the water quality, Chl-a, and phytoplankton in the short term and impaired aquatic organisms and the whole ecosystem in the long term.展开更多
Bivalve shell fossils,cemented by authigenic carbonates,are widely spread in the Haima cold seep,Qiongdongnan Basin of the South China Sea(SCS).In this study,we examined an element profile of Gigantidas platifrons in ...Bivalve shell fossils,cemented by authigenic carbonates,are widely spread in the Haima cold seep,Qiongdongnan Basin of the South China Sea(SCS).In this study,we examined an element profile of Gigantidas platifrons in the Haima cold seeps at a water depth of 1381 m.Based on the scanning electron microscope(SEM)analyses,the prismatic layer and nacreous layer were identified,which are characterized by prismatic structure and stratified structure,respectively.In addition,the profile can be subdivided into two parts:altered and unaltered zones.Laser inductively coupled plasma mass spectrometry(LA-ICP-MS)mapping shows that the element concentrations of the altered zones were influenced by the authigenic carbonate rocks,whereas the element concentrations of unaltered zones remain stable.In-situ X-ray diffraction(XRD)analyses show that the mineral constituent of the prismatic layer is mainly composed of aragonite.Along with the growth profile,Mg/Ca ratios of unaltered zones have minor variations,ranging 0.72-0.97 mmol/mol(mean=0.87 mmol/mol),with estimated temperatures of 3.8-4.1℃,indicating that the temperature of the surrounding seawater remains constant and agree with the measured data of 3.9℃which was conducted by a conductivity-temperature-depth system(CTD).The minor variations of Ba/Ca ratios(0.01-0.06 mmol/mol;mean=0.04 mmol/mol)indicate a relatively stabilized salinity of the surrounding seawater.S/Ca ratios show large variations of 0.04-4.15 mmol/mol(mean=1.37 mmol/mol).S/Ca ratios have regular variations which generally correspond to the variations of the Mg/Ca ratios,highlighting that the S/Ca ratios of bivalve shells show the potential to reflect the growth rate of the Gigantides.However,further studies should be carried out on the understanding of the links between the S/Ca ratios and seepage intensity of cold-seep fluids.展开更多
A new gravity sensor based on electromagnetic damping for the JMGrav marine gravimeter is presented.The new gravity sensor considered the advanced construction methods of the electromagnetic damping system of the grav...A new gravity sensor based on electromagnetic damping for the JMGrav marine gravimeter is presented.The new gravity sensor considered the advanced construction methods of the electromagnetic damping system of the gravimeter.The design features of the new system are discussed and the research survey data in the South China Sea are shown.Numerical simulations are applied to model the magnetic and mechanical characteristics of the system using finite element analysis and to evaluate the force distribution and the resulting damping effects.The performance characteristics of the system were tested on a motion simulator in laboratory,and the gravimeter was subjected to vertical accelerations of up to 100 Gal in 1-1000 s.It was found that the amplitude reduction of vertical accelerations in 3-15 s is 30-45 dB,with a time lag of 2-5 s,while the effect on gravity in period greater than 600 s is less than 0.5 dB,with a time lag of less than 100 s.The accelerations cause discrepancies of approximately only 1 mGal between the static value and the mean dynamic value.The sea tests were conducted in September 2020.Gravity measurements were taken with a JMGrav marine gravimeter onboard the R/V Dongfanghong 3,and the effective survey line exceeded 2000 km.Completely irregular accelerations with peaks up to 100 Gal yielded a reduction of approximately 40 dB in amplitude.The survey data were evaluated using ocean gravity field models and grid line tests.The results show that the accuracy of the gravity measurements is better than 2 mGal.展开更多
The South China Sea(SCS),situated in southern China,at the junction of the Pacific Plate,the Eurasian Plate,and the Indian Ocean Plate,is a northeast-southwest trending semi-enclosed sea.It spans an area of approximat...The South China Sea(SCS),situated in southern China,at the junction of the Pacific Plate,the Eurasian Plate,and the Indian Ocean Plate,is a northeast-southwest trending semi-enclosed sea.It spans an area of approximately 3.5 million square kilometers and has an average water depth of about 1200 m,its deepest point reaching 5559 m.In 2021,a scientific expedition(called as U1 voyage)in the South China Sea was organized by the Innovation Research Team of Guangdong Special Key Program from March to April,this marks the first comprehensive scientific research voyage to the southern Uboundary corridor.Consisting of a total of 30 papers,this special issue is to share a portion of the research findings from this scientific expedition U1 voyage,covering six aspects:1)characteristics of the marine ecosystem in the SCS and its response to marine dynamic processes;2)multi-scale marine dynamic processes,sea-air interactions,and forecasting techniques in the SCS;3)geomorphology and geological structure;4)sedimentary processes and resource potential in the SCS;5)geostrategy,rights and interests maintenance and strategic countermeasures in the SCS;6)marine scientific instruments.By integrating the scientific research with the study of history,jurisprudence and international strategies,this issue presents new insights into the formation history and scope evolution of the SCS,and it also seeks to establish a new scientific framework based on the marine governance and development of the SCS.展开更多
The acoustic properties of seafloor sediment are essential parameters in the exploration of marine resources,ocean scientific research and ocean engineering.Seafloor sediment samples were collected at the southern U-b...The acoustic properties of seafloor sediment are essential parameters in the exploration of marine resources,ocean scientific research and ocean engineering.Seafloor sediment samples were collected at the southern U-boundary of the South China Sea(SCS),and the acoustic and physical properties were measured in the laboratory.The correlation between physical and sound speed ratio(SSR)was discussed,and SSR-physical property empirical regressions in the Sunda Shelf were established for the first time.Compared with the northern continental shelf of SCS,the Sunda Shelf are mainly silty and sand sediment,and the SSR ranges from 0.9949 to 1.0944,which has higher SSR than the northern continental shelf,implies that the Sunda Shelf is a high SSR area.Since the same kind of sediment has different physical properties,the single physical parameter of sediment cannot fully represent the acoustic properties of sediment,therefore,the multiple parameter prediction model should develop in the future to improve the prediction precision.展开更多
To dampen periodic off-levelling motions within an inertial platform while undergoing horizontal accelerations of the same period and to achieve a levelling accuracy of a few tens of arcseconds with that system,an int...To dampen periodic off-levelling motions within an inertial platform while undergoing horizontal accelerations of the same period and to achieve a levelling accuracy of a few tens of arcseconds with that system,an internally damped inertial platform for a marine scalar gravity system was the developed.Methods for attenuating horizontal acceleration and reducing off-levelling error by a satisfactory gyro-levelling loop,which are fundamental to the internally damped inertial platform,were designed and implemented.In addition,phase delays are introduced by the levelling loop.The resulting off-levelling gravity errors were analyzed and modeled.A series of tests on a motion simulator were performed in laboratory for a variety of simulated sea conditions.We found that the motion of the platform is a function of the amplitude and period of the simulated ship motions and ranges between 10 and 40 arcseconds.In addition,the phase lag between platform motion and ship motion is not constant but ranges 180°-270°,depending on the period and amplitude of the motion.Then,the platform,on which a gravimeter was mounted,was installed on the R/V Shiyan 2 to conduct a gravity survey in the South China Sea.Despite rough sea conditions,it was shown that in short periods of 2-30 s,the off-levelling angle was less than 30 arcseconds,and the phase lagged the horizontal acceleration by 230°-260°.From a repeated survey line and intersecting survey points,the estimated errors of gravity measurements were between 1.3 and 1.7 mGal.The marine measurements results were compared with those of satellite altimetry data and show a mean value of 0.5 mGal in a standard deviation of 1.5 mGal.展开更多
基金Supported by the National Key R&D Program of China(No.2021YFF0501202)the National Natural Science Foundation of China(Nos.12374428,42176191,U22A2012,12304507)+2 种基金the Guangdong Special Support Key Team Program(Nos.2019BT02H594,GML2021GD0810)the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(No.SML2023SP232)the Fundamental Research Funds for the Central Universities,Sun Yat-sen University(No.24lgqb006)。
文摘To understand the acoustic and physical properties of piston core samples collected from the Sunda continental shelf and analyze their distribution patterns,the samples were analyzed in laboratory,from which three provinces were divided in sound speed,sound speed ratio,porosity,wet bulk density,and maximum shear strength.ProvinceⅠhad lower sound speed and sound speed ratio(<1.04),high porosity,and low wet bulk density.ProvinceⅡhad higher sound speed and sound speed ratio(>1.04),low porosity,and high wet bulk density.ProvinceⅢhad the lowest sound speed and sound speed ratio(0.99),highest porosity(81%),and lowest wet bulk density(1.34 g/cm^(3)).The distribution pattern indicates that sediment movement,sediment source,topography,and hydrodynamic conditions influenced the distribution of acoustic and physical properties.Furthermore,we investigated the relationship of the maximum shear strength to the porosity and wet bulk density,and found that the maximum shear strength was proportional to both the porosity and wet bulk density.This finding has significant implications for ocean engineering applications.
文摘The increase of water temperature, due to thermal discharges from two nuclear power stations, was one of the most significant environmental changes since 1982 in the Daya Bay, located in the north of the South China Sea. This study investigates the long-term (1982-2012) environmental changes in Daya Bay in response to the increase of water temperature, via comprehensively interpreting and analyzing both satellite and in situ observations along with previous data. The results show that: 1) salinity, dissolved oxygen (DO), chemical oxygen demand (COD) and nutrients had been enhanced after the thermal discharges started in 1994;2) the concentration of Chl-a increased while the net-phytoplankton abundance decreased;3) diversity of the phytoplankton community had decreased;4) fishery production had declined;and 5) frequency of Harmful Algal Bloom occurrence had increased. Satellite images show clearly that a thermal plume from the power stations extended toward the interior of Daya Bay, and that surface temperature of the seawater increased as one approached the power stations. The analysis suggests that the thermal water discharged from the two power stations was a driver of the ecosystem’s change in Daya Bay. Several factors, including nutrients, salinity, DO, and COD, varied according to the increase of water temperature. These factors affected the water quality, Chl-a, and phytoplankton in the short term and impaired aquatic organisms and the whole ecosystem in the long term.
基金Supported by the Key Research and Development Project of Guangdong Province(No.2020B1111510001)the National Natural Science Foundation of China(No.U2244224)+1 种基金the PI Project of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2020GD0802)the Guangdong Special Support Team Program(No.2019BT02H594)。
文摘Bivalve shell fossils,cemented by authigenic carbonates,are widely spread in the Haima cold seep,Qiongdongnan Basin of the South China Sea(SCS).In this study,we examined an element profile of Gigantidas platifrons in the Haima cold seeps at a water depth of 1381 m.Based on the scanning electron microscope(SEM)analyses,the prismatic layer and nacreous layer were identified,which are characterized by prismatic structure and stratified structure,respectively.In addition,the profile can be subdivided into two parts:altered and unaltered zones.Laser inductively coupled plasma mass spectrometry(LA-ICP-MS)mapping shows that the element concentrations of the altered zones were influenced by the authigenic carbonate rocks,whereas the element concentrations of unaltered zones remain stable.In-situ X-ray diffraction(XRD)analyses show that the mineral constituent of the prismatic layer is mainly composed of aragonite.Along with the growth profile,Mg/Ca ratios of unaltered zones have minor variations,ranging 0.72-0.97 mmol/mol(mean=0.87 mmol/mol),with estimated temperatures of 3.8-4.1℃,indicating that the temperature of the surrounding seawater remains constant and agree with the measured data of 3.9℃which was conducted by a conductivity-temperature-depth system(CTD).The minor variations of Ba/Ca ratios(0.01-0.06 mmol/mol;mean=0.04 mmol/mol)indicate a relatively stabilized salinity of the surrounding seawater.S/Ca ratios show large variations of 0.04-4.15 mmol/mol(mean=1.37 mmol/mol).S/Ca ratios have regular variations which generally correspond to the variations of the Mg/Ca ratios,highlighting that the S/Ca ratios of bivalve shells show the potential to reflect the growth rate of the Gigantides.However,further studies should be carried out on the understanding of the links between the S/Ca ratios and seepage intensity of cold-seep fluids.
基金Supported by the National Natural Science Foundation of China(Nos.42192535,41876136)the Guangdong Special Support Program(No.2019BT02H594)。
文摘A new gravity sensor based on electromagnetic damping for the JMGrav marine gravimeter is presented.The new gravity sensor considered the advanced construction methods of the electromagnetic damping system of the gravimeter.The design features of the new system are discussed and the research survey data in the South China Sea are shown.Numerical simulations are applied to model the magnetic and mechanical characteristics of the system using finite element analysis and to evaluate the force distribution and the resulting damping effects.The performance characteristics of the system were tested on a motion simulator in laboratory,and the gravimeter was subjected to vertical accelerations of up to 100 Gal in 1-1000 s.It was found that the amplitude reduction of vertical accelerations in 3-15 s is 30-45 dB,with a time lag of 2-5 s,while the effect on gravity in period greater than 600 s is less than 0.5 dB,with a time lag of less than 100 s.The accelerations cause discrepancies of approximately only 1 mGal between the static value and the mean dynamic value.The sea tests were conducted in September 2020.Gravity measurements were taken with a JMGrav marine gravimeter onboard the R/V Dongfanghong 3,and the effective survey line exceeded 2000 km.Completely irregular accelerations with peaks up to 100 Gal yielded a reduction of approximately 40 dB in amplitude.The survey data were evaluated using ocean gravity field models and grid line tests.The results show that the accuracy of the gravity measurements is better than 2 mGal.
基金Supported by the Guangdong Special Key Team Program(No.2019BT02H594)the Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(No.GML2021GD0810)the Major Project of National Social Science Foundation of China(No.21ZDA097)(Research on the Active Participation in the Reform of Global Economic Governance System)。
文摘The South China Sea(SCS),situated in southern China,at the junction of the Pacific Plate,the Eurasian Plate,and the Indian Ocean Plate,is a northeast-southwest trending semi-enclosed sea.It spans an area of approximately 3.5 million square kilometers and has an average water depth of about 1200 m,its deepest point reaching 5559 m.In 2021,a scientific expedition(called as U1 voyage)in the South China Sea was organized by the Innovation Research Team of Guangdong Special Key Program from March to April,this marks the first comprehensive scientific research voyage to the southern Uboundary corridor.Consisting of a total of 30 papers,this special issue is to share a portion of the research findings from this scientific expedition U1 voyage,covering six aspects:1)characteristics of the marine ecosystem in the SCS and its response to marine dynamic processes;2)multi-scale marine dynamic processes,sea-air interactions,and forecasting techniques in the SCS;3)geomorphology and geological structure;4)sedimentary processes and resource potential in the SCS;5)geostrategy,rights and interests maintenance and strategic countermeasures in the SCS;6)marine scientific instruments.By integrating the scientific research with the study of history,jurisprudence and international strategies,this issue presents new insights into the formation history and scope evolution of the SCS,and it also seeks to establish a new scientific framework based on the marine governance and development of the SCS.
基金Supported by the Guangdong Special Support Key Team Program(No.2019BT02H594)the National Key R&D Program of China(No.2021YFF0501202)+5 种基金the Youth Innovation Promotion Association CASthe National Natural Science Foundation of China(Nos.41706045,42176191,41773039,U22A2012)the Rising Star Foundation of the Integrated Research Center for Islands and Reefs Sciences,CAS(No.ZDRW-XH-2021-2-03)the CAS Key Laboratory of Science and Technology on Operational Oceanography Open Project Funding(No.OOST2021-01)the Guangdong Natural Science Foundation(No.2017A030313237)the State Key Laboratory of Acoustics,Chinese Academy of Sciences(Nos.SKLA202007,SKLA202106)。
文摘The acoustic properties of seafloor sediment are essential parameters in the exploration of marine resources,ocean scientific research and ocean engineering.Seafloor sediment samples were collected at the southern U-boundary of the South China Sea(SCS),and the acoustic and physical properties were measured in the laboratory.The correlation between physical and sound speed ratio(SSR)was discussed,and SSR-physical property empirical regressions in the Sunda Shelf were established for the first time.Compared with the northern continental shelf of SCS,the Sunda Shelf are mainly silty and sand sediment,and the SSR ranges from 0.9949 to 1.0944,which has higher SSR than the northern continental shelf,implies that the Sunda Shelf is a high SSR area.Since the same kind of sediment has different physical properties,the single physical parameter of sediment cannot fully represent the acoustic properties of sediment,therefore,the multiple parameter prediction model should develop in the future to improve the prediction precision.
基金Supported by the National Natural Science Foundation of China(Nos.42192535,41876136)the Guangdong Special Support Program(No.2019BT02H594)supported by the Key Special Projects of the Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)(for Introduced Talents Team)(Nos.GML2021GD0810,GML2019ZD0602)。
文摘To dampen periodic off-levelling motions within an inertial platform while undergoing horizontal accelerations of the same period and to achieve a levelling accuracy of a few tens of arcseconds with that system,an internally damped inertial platform for a marine scalar gravity system was the developed.Methods for attenuating horizontal acceleration and reducing off-levelling error by a satisfactory gyro-levelling loop,which are fundamental to the internally damped inertial platform,were designed and implemented.In addition,phase delays are introduced by the levelling loop.The resulting off-levelling gravity errors were analyzed and modeled.A series of tests on a motion simulator were performed in laboratory for a variety of simulated sea conditions.We found that the motion of the platform is a function of the amplitude and period of the simulated ship motions and ranges between 10 and 40 arcseconds.In addition,the phase lag between platform motion and ship motion is not constant but ranges 180°-270°,depending on the period and amplitude of the motion.Then,the platform,on which a gravimeter was mounted,was installed on the R/V Shiyan 2 to conduct a gravity survey in the South China Sea.Despite rough sea conditions,it was shown that in short periods of 2-30 s,the off-levelling angle was less than 30 arcseconds,and the phase lagged the horizontal acceleration by 230°-260°.From a repeated survey line and intersecting survey points,the estimated errors of gravity measurements were between 1.3 and 1.7 mGal.The marine measurements results were compared with those of satellite altimetry data and show a mean value of 0.5 mGal in a standard deviation of 1.5 mGal.