期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Adaptive Walking Control of Biped Robots Using Online Trajectory Genera- tion Method Based on Neural Oscillators 被引量:6
1
作者 Chengju Liu danwei wang +1 位作者 Erik David Goodman Qijun Chen 《Journal of Bionic Engineering》 SCIE EI CSCD 2016年第4期572-584,共13页
This work concerns biped adaptive walking control on irregular terrains with online trajectory generation. A new trajectory generation method is proposed based on two neural networks. One oscillatory network is design... This work concerns biped adaptive walking control on irregular terrains with online trajectory generation. A new trajectory generation method is proposed based on two neural networks. One oscillatory network is designed to generate foot trajectory, and another set of neural oscillators can generate the trajectory of Center of Mass (CoM) online. Using a motion engine, the characteristics of the workspace are mapped to the joint space. The entraining property of the neural oscillators is exploited for adaptive walking in the absence of a priori knowledge of walking conditions. Sensory feedback is applied to modify the gen- erated trajectories online to improve the walking quality. Furthermore, a staged evolutionary algorithm is developed to tune system parameters to improve walking performance. The developed control strategy is tested using a humanoid robot on ir- regular terrains. The experiments verify the success of the presented strategy. The biped robot can walk on irregular terrains with varying slopes, unknown bumps and stairs through autonomous adjustment of its walking patterns. 展开更多
关键词 biped robot adaptive walking neural oscillator trajectory generation staged evolution algorithm
原文传递
Robust attitude coordinated control for spacecraft formation with communication delays 被引量:7
2
作者 Jian ZHANG Qinglei HU +1 位作者 danwei wang Wenbo XIE 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2017年第3期1071-1085,共15页
In this paper,attitude coordinated tracking control algorithms for multiple spacecraft formation are investigated with consideration of parametric uncertainties,external disturbances,communication delays and actuator ... In this paper,attitude coordinated tracking control algorithms for multiple spacecraft formation are investigated with consideration of parametric uncertainties,external disturbances,communication delays and actuator saturation.Initially,a sliding mode delay-dependent attitude coordinated controller is proposed under bounded external disturbances.However,neither inertia uncertainty nor actuator constraint has been taken into account.Then,a robust saturated delaydependent attitude coordinated control law is further derived,where uncertainties and external disturbances are handled by Chebyshev neural networks(CNN).In addition,command filter technique is introduced to facilitate the backstepping design procedure,through which actuator saturation problem is solved.Thus the spacecraft in the formation are able to track the reference attitude trajectory even in the presence of time-varying communication delays.Rigorous analysis is presented by using Lyapunov-Krasovskii approach to demonstrate the stability of the closed-loop system under both control algorithms.Finally,the numerical examples are carried out to illustrate the efficiency of the theoretical results. 展开更多
关键词 Actuator saturation Attitude control Communication delays Neural networks Spacecraft formation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部